-
1
-
-
20544450502
-
-
2nd ed, de Meijere, A, Diederich, F, Eds, Wiley-VCH: Weinheim
-
(a) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
-
(2004)
Metal-Catalyzed Cross-Coupling Reactions
-
-
-
2
-
-
0038432792
-
Cross-Coupling Reactions: A Practical Guide
-
Miyaura, N, Ed, Springer: Berlin
-
(b) Cross-Coupling Reactions: A Practical Guide, In Topics in Current Chemistry, Vol. 219; Miyaura, N., Ed.; Springer: Berlin, 2002.
-
(2002)
Topics in Current Chemistry
, vol.219
-
-
-
4
-
-
0025827287
-
-
(b) Negishi, E.; Oweczarczyk, Z.; Swanson, D. R. Tetrahedron Lett. 1991, 32, 4453.
-
(1991)
Tetrahedron Lett
, vol.32
, pp. 4453
-
-
Negishi, E.1
Oweczarczyk, Z.2
Swanson, D.R.3
-
6
-
-
0037111808
-
-
Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265.
-
(2002)
J. Org. Chem
, vol.67
, pp. 8265
-
-
Lee, K.1
Lee, J.2
Lee, P.H.3
-
8
-
-
49649083155
-
-
Treatment of (E)-1-phenylthio-2-phenylethene (1a) with allylmagnesium bromide in the presence of nickel catalyst (the same reaction conditions as in entry 9 in Table 1) did not afford 3a.
-
(a) Treatment of (E)-1-phenylthio-2-phenylethene (1a) with allylmagnesium bromide in the presence of nickel catalyst (the same reaction conditions as in entry 9 in Table 1) did not afford 3a.
-
-
-
-
9
-
-
49649113724
-
-
Treatment of (E)-1-bromo-2-phenylethene with allylzinc chloride in the presence of nickel catalyst (the same reaction conditions as in entry 9 in Table 1) gave 3a in 63% yield.
-
(b) Treatment of (E)-1-bromo-2-phenylethene with allylzinc chloride in the presence of nickel catalyst (the same reaction conditions as in entry 9 in Table 1) gave 3a in 63% yield.
-
-
-
-
10
-
-
49249152306
-
-
(a) Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 20, 43.
-
(1979)
Tetrahedron Lett
, vol.20
, pp. 43
-
-
Okamura, H.1
Miura, M.2
Takei, H.3
-
11
-
-
0000810889
-
-
(b) Flandanese, V.; Marchese, G.; Mascolo, G.; Naso, F.; Ronzini, L. Tetrahedron Lett. 1988, 29, 3705.
-
(1988)
Tetrahedron Lett
, vol.29
, pp. 3705
-
-
Flandanese, V.1
Marchese, G.2
Mascolo, G.3
Naso, F.4
Ronzini, L.5
-
12
-
-
17444380857
-
-
(c) Itami, K.; Higashi, S.; Mineno, M.; Yoshida, J. Org. Lett. 2005, 7, 1219.
-
(2005)
Org. Lett
, vol.7
, pp. 1219
-
-
Itami, K.1
Higashi, S.2
Mineno, M.3
Yoshida, J.4
-
13
-
-
0021467349
-
-
Takagi, K.; Hayama, N.; Sasaki, K. Bull. Chem. Soc. Jpn. 1984, 57, 1887.
-
(1984)
Bull. Chem. Soc. Jpn
, vol.57
, pp. 1887
-
-
Takagi, K.1
Hayama, N.2
Sasaki, K.3
-
15
-
-
49649103297
-
-
(a) Onaka, N.; Goto, T.; Mukaiyama, T. Tetrahedron Lett. 1979, 20, 1483.
-
(1979)
Tetrahedron Lett
, vol.20
, pp. 1483
-
-
Onaka, N.1
Goto, T.2
Mukaiyama, T.3
-
16
-
-
16244404249
-
-
(b) Quisenberry, K. T.; Smith, J. D.; Voehler, M.; Stec, D. F.; Hanusa, T. P.; Brennessel, W. W. J. Am. Chem. Soc. 2005, 127, 4376.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 4376
-
-
Quisenberry, K.T.1
Smith, J.D.2
Voehler, M.3
Stec, D.F.4
Hanusa, T.P.5
Brennessel, W.W.6
-
17
-
-
46149094730
-
-
(a) Metzger, A.; Scade, A. A.; Knochel, P. Org. Lett. 2008, 10, 1107.
-
(2008)
Org. Lett
, vol.10
, pp. 1107
-
-
Metzger, A.1
Scade, A.A.2
Knochel, P.3
-
18
-
-
37549055389
-
-
(b) Soorukram, D.; Boudet, N.; Malakhov, V.; Knochel, P. Synthesis 2007, 3915.
-
(2007)
Synthesis
, pp. 3915
-
-
Soorukram, D.1
Boudet, N.2
Malakhov, V.3
Knochel, P.4
-
19
-
-
0033538289
-
-
Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 5108
-
-
Ogawa, A.1
Ikeda, T.2
Kimura, K.3
Hirao, T.4
-
20
-
-
49649087528
-
-
The use of Ni(0) catalyst which was prepared from Ni(II) and BuLi was not so effective. On the contrary Ni(II) catalyst gave the product with a reasonable yield. In this case, the formation of a radical species from benzylnickel intermediate may be a possible route. In fact, the addition of TEMPO interfered with the reaction. In the reaction of alkenyl sulfide with arylmethylzinc bromide (entry 4 in Table 3) addition of TEMPO (1 equiv) resulted in the low yield of 6a (14%).
-
The use of Ni(0) catalyst which was prepared from Ni(II) and BuLi was not so effective. On the contrary Ni(II) catalyst gave the product with a reasonable yield. In this case, the formation of a radical species from benzylnickel intermediate may be a possible route. In fact, the addition of TEMPO interfered with the reaction. In the reaction of alkenyl sulfide with arylmethylzinc bromide (entry 4 in Table 3) addition of TEMPO (1 equiv) resulted in the low yield of 6a (14%).
-
-
-
-
21
-
-
49649109734
-
-
Preparation of (E)-1-Phenyl-1,4-pentadiene (3a, To a solution of nickel(II) chloride (0.10 mmol) and tris(2-furyl)phosphine (0.20 mmol) in THF (0.5 mL) under argon, n-BuLi (0.2 mmol, 1.6 M in hexane) was added and stirred for 15 min at 25°C. To the mixture, after a solution of (E)-1-phenylthio-2-phenylethene (1a) in THF (1.0 mL) was added, allylzinc chloride (2a; 2.0 mmol, 0.7 M in THF) was added dropwise. The resulting mixture was stirred for 4 h at 60°C. After aqueous workup, purification by silica gel column chromatography gave (E)-1-phenyl-1,4-pentadiene (3a) in 99% yield. 1H NMR (300 MHz, CDCl3, δ, 7.17-7.37 (m, 5 H, 6.42 (d, J, 15.9 Hz, 1 H, 6.23 (dt, J, 6.3, 15.9 Hz, 1 H, 5.90 (ddt, J, 6.3, 10.5, 15.9 Hz, 1 H, 5.05-5.16 (m, 2 H, 2.97 ddt, J, 1.5, 6.3, 6.3 Hz, 2 H
-
3): δ = 7.17-7.37 (m, 5 H), 6.42 (d, J = 15.9 Hz, 1 H), 6.23 (dt, J = 6.3, 15.9 Hz, 1 H), 5.90 (ddt, J = 6.3, 10.5, 15.9 Hz, 1 H), 5.05-5.16 (m, 2 H), 2.97 (ddt, J = 1.5, 6.3, 6.3 Hz, 2 H).
-
-
-
-
22
-
-
49649093423
-
-
3): δ = 7.17-7.38 (m, 10H), 6.46 (d, J = 15.9 Hz, 1 H), 6.36 (dt, J = 6.3, 15.9 Hz, 1 H), 3.55 (d, J = 6.3 Hz, 2 H).
-
3): δ = 7.17-7.38 (m, 10H), 6.46 (d, J = 15.9 Hz, 1 H), 6.36 (dt, J = 6.3, 15.9 Hz, 1 H), 3.55 (d, J = 6.3 Hz, 2 H).
-
-
-
|