메뉴 건너뛰기




Volumn 3, Issue , 2007, Pages 140-148

Estimating the false discovery rate using mixed normal distribution for identifying differentially expressed genes in microarray data analysis

Author keywords

Differentially expressed genes; False discovery rate; Microarray; Mixed normal distribution; Significance analysis of microarray

Indexed keywords

DOCETAXEL;

EID: 49649093310     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.1177/117693510700300009     Document Type: Article
Times cited : (8)

References (37)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov BN, Csaki F eds, Akademiai Kiado, Budapest, pp
    • Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F eds. 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp. 267-81.
    • (1973) 2nd international symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene change
    • Baldi, P. and Long, A.D. 2001. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene change. Bioinformatics, 17:509-19.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57:289-300.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 6
    • 0038238080 scopus 로고    scopus 로고
    • Statistical methods for ranking differentially expressed genes
    • Broberg, P. 2003. Statistical methods for ranking differentially expressed genes. Genome Biology, 4(6):R41.
    • (2003) Genome Biology , vol.4 , Issue.6
    • Broberg, P.1
  • 7
    • 0042125511 scopus 로고    scopus 로고
    • Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer
    • Chang, J.C., Wooten, E.C., Tsimelzon, A. et al. 2003. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet., 362:362-9.
    • (2003) Lancet , vol.362 , pp. 362-369
    • Chang, J.C.1    Wooten, E.C.2    Tsimelzon, A.3
  • 8
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cDNA microarray images
    • Chen, Y., Dougherty, E.R. and Bittner, M.L. 1997. Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journal of Biomedical Optics, 2:364-7.
    • (1997) Journal of Biomedical Optics , vol.2 , pp. 364-367
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.L.3
  • 10
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy, A. and Simon, R.M. 2007. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute, 99:147-57.
    • (2007) Journal of the National Cancer Institute , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 13
    • 25144463543 scopus 로고    scopus 로고
    • Sample-size for FDR-control in microarray data analysis
    • Jung, S. 2005. Sample-size for FDR-control in microarray data analysis. Bioinformatics, 21(14):3097-3014.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3097-3014
    • Jung, S.1
  • 14
    • 33747877325 scopus 로고    scopus 로고
    • How accurately can we control the FDR in analyzing microarray data?
    • Jung, S. and Jang, W. 2006. How accurately can we control the FDR in analyzing microarray data? Bioinformatics, 22(14):1730-6.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1730-1736
    • Jung, S.1    Jang, W.2
  • 16
    • 23244447197 scopus 로고    scopus 로고
    • Significance testing for small microarray experiments
    • Kooperberg, C., Aragaki, A., Strand, A.D. et al. 2005. Significance testing for small microarray experiments. Statistics in Medicine, 24:2281-98.
    • (2005) Statistics in Medicine , vol.24 , pp. 2281-2298
    • Kooperberg, C.1    Aragaki, A.2    Strand, A.D.3
  • 17
    • 0034730124 scopus 로고    scopus 로고
    • Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations
    • Lee, M., Kuo, F., Whitmore, G. et al. 2000. Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences of the U.S.A., 97(18):9834-39.
    • (2000) Proceedings of the National Academy of Sciences of the U.S.A , vol.97 , Issue.18 , pp. 9834-9839
    • Lee, M.1    Kuo, F.2    Whitmore, G.3
  • 20
    • 49649104635 scopus 로고    scopus 로고
    • Gene Expression Omnibus. Breast cancer and docetaxel treatment
    • Accessed 9 April 2007. URL
    • National Center for Biotechnology Information, . Gene Expression Omnibus. Breast cancer and docetaxel treatment. Accession No: GDS360. Accessed 9 April 2007. URL: http://www.ncbi.nlm.nih.gov/geo/.
    • Accession No: GDS360
  • 21
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios; improving statistical inference about gene expression changes from microarray data
    • Newton, M.A., Kendziorski, C.M., Richmond, C.S. et al. 2001. On differential variability of expression ratios; improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8:37-52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3
  • 22
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan, W. 2002. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics, 18(4):546-56.
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 546-556
    • Pan, W.1
  • 23
    • 0041592555 scopus 로고    scopus 로고
    • On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression
    • Pan, W. 2003. On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics, 19(11):1333-40.
    • (2003) Bioinformatics , vol.19 , Issue.11 , pp. 1333-1340
    • Pan, W.1
  • 24
    • 2142854576 scopus 로고    scopus 로고
    • A mixture model approach to detecting differentially expressed genes with microarray data
    • Pan, W., Lin, J. and Le, C. 2003. A mixture model approach to detecting differentially expressed genes with microarray data. Functional and Integrative Genomics, 3:117-24.
    • (2003) Functional and Integrative Genomics , vol.3 , pp. 117-124
    • Pan, W.1    Lin, J.2    Le, C.3
  • 25
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample-size for microarray studies
    • Pawitan, Y., Michiels, S., Koscielny, S. et al. 2005. False discovery rate, sensitivity and sample-size for microarray studies. Bioinformatics, 21(13):3017-3024.
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3
  • 26
    • 27544510142 scopus 로고    scopus 로고
    • Bias in the estimation of false discovery rate in microarray studies
    • Pawitan, Y., Murthy, K., Michiels, S. et al. 2005. Bias in the estimation of false discovery rate in microarray studies. Bioinformatics, 21(20):3865-872.
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3865-3872
    • Pawitan, Y.1    Murthy, K.2    Michiels, S.3
  • 27
    • 33644858587 scopus 로고    scopus 로고
    • Multidimensional local false discovery rate for microarray data
    • Ploner, A., Calza, S., Gusnanto, A. et al. 2006. Multidimensional local false discovery rate for microarray data. Bioinformatics, 22(5):556-65.
    • (2006) Bioinformatics , vol.22 , Issue.5 , pp. 556-565
    • Ploner, A.1    Calza, S.2    Gusnanto, A.3
  • 28
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-value
    • Pounds, S. and Morris, W.S. 2003. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-value. Bioinformatics, 19(10):1236-42.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1236-1242
    • Pounds, S.1    Morris, W.S.2
  • 29
    • 33747828250 scopus 로고    scopus 로고
    • Robust estimation of the false discovery rate
    • Pounds, S. and Cheng, C. 2006. Robust estimation of the false discovery rate. Bioinformatics, 22(16):1979-87.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1979-1987
    • Pounds, S.1    Cheng, C.2
  • 30
    • 0037433040 scopus 로고    scopus 로고
    • Identifying differentially expressed genes using false discovery rate procedure
    • Reiner, A., Yekutieli, D. and Benjamini, Y. 2003. Identifying differentially expressed genes using false discovery rate procedure. Bioinformatics, 19(3):368-75.
    • (2003) Bioinformatics , vol.19 , Issue.3 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 33
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas, J., Olson, J., Tapscotto, S. et al. 2001. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research, 11:1227-36.
    • (2001) Genome Research , vol.11 , pp. 1227-1236
    • Thomas, J.1    Olson, J.2    Tapscotto, S.3
  • 35
    • 33748780360 scopus 로고    scopus 로고
    • Parametric and nonparametric FDR estimation revisited
    • Wu, B., Guan, Z. and Zhao, H. 2006. Parametric and nonparametric FDR estimation revisited. Biometrics, 62:735-44.
    • (2006) Biometrics , vol.62 , pp. 735-744
    • Wu, B.1    Guan, Z.2    Zhao, H.3
  • 36
    • 28444438861 scopus 로고    scopus 로고
    • A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data
    • Xie, Y., Pan, W. and Khodursky, A.B. 2005. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics, 21:4280-8.
    • (2005) Bioinformatics , vol.21 , pp. 4280-4288
    • Xie, Y.1    Pan, W.2    Khodursky, A.B.3
  • 37
    • 0038053155 scopus 로고    scopus 로고
    • Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray data
    • Zhao, Y. and Pan, W. 2003. Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray data. Bioinformatics, 19(9):1046-54.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1046-1054
    • Zhao, Y.1    Pan, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.