-
1
-
-
84968518930
-
Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints
-
MR 50 #14438
-
F. J. ALMGREN Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Bull. Amer. Math. Soc. 81 (1975), 151-154. MR 50 #14438
-
(1975)
Bull. Amer. Math. Soc.
, vol.81
, pp. 151-154
-
-
Almgren Jr., F.J.1
-
2
-
-
1642289454
-
Isoperimetric divisions into several cells with natural boundary, Intuitive Geometry (Siófok, 1985)
-
North-Holland, Amsterdam. MR 88j:52023
-
M. N. BLEICHER, Isoperimetric divisions into several cells with natural boundary, Intuitive Geometry (Siófok, 1985). Colloq. Math. Soc. János Bolyai, vol. 48, North-Holland, Amsterdam, 1987, pp. 63-84. MR 88j:52023
-
(1987)
Colloq. Math. Soc. János Bolyai
, vol.48
, pp. 63-84
-
-
Bleicher, M.N.1
-
3
-
-
1542785057
-
Isoperimetric networks in the Euclidean plane
-
MR 96k:52014
-
_, Isoperimetric networks in the Euclidean plane, Studia Sci. Math. Hungar. 31 (1996), 455-478. MR 96k:52014
-
(1996)
Studia Sci. Math. Hungar.
, vol.31
, pp. 455-478
-
-
-
4
-
-
1542422412
-
Isoperimetric division into a finite number of cells in the plane
-
MR 89a:52036
-
MICHAEL N. BLEICHER, Isoperimetric division into a finite number of cells in the plane, Studia Sci. Math. Hungar. 22 (1987), 123-137. MR 89a:52036
-
(1987)
Studia Sci. Math. Hungar.
, vol.22
, pp. 123-137
-
-
Bleicher, M.N.1
-
6
-
-
0142138788
-
Double bubbles in the three-torus
-
2 002 675
-
MIGUEL CARRIÓN ÁLVAREZ, JOSEPH CORNELI GENEVIEVE WALSH, and SHABNAM BEHESHTI, Double bubbles in the three-torus, Experiment. Math. 12 (2003), 79-89. 2 002 675
-
(2003)
Experiment. Math.
, vol.12
, pp. 79-89
-
-
Álvarez, M.C.1
Corneli, J.2
Walsh, G.3
Beheshti, S.4
-
7
-
-
4344652911
-
The double bubble problem on the flat two-torus
-
JOSEPH CORNELI PAUL HOLT, GEORGE LEE, NICHOLAS LEGER, ERIC SCHOENFELD, and BENJAMIN STEINHURST, The double bubble problem on the flat two-torus, Transactions Amer. Math. Soc. 356 (2004), 3769-3820.
-
(2004)
Transactions Amer. Math. Soc.
, vol.356
, pp. 3769-3820
-
-
Holt, J.C.P.1
Lee, G.2
Leger, N.3
Schoenfeld, E.4
Steinhurst, B.5
-
8
-
-
4944231510
-
The double bubble problem in spherical space and hyperbolic space
-
DOI 10.1155/S0161171202207188. 1 949 693
-
ANDREW COTTON and DAVID FREEMAN, The double bubble problem in spherical space and hyperbolic space, Int. J. Math. Math. Sci. 32 (2002), DOI 10.1155/S0161171202207188, 641-699, http://dx.doi.org/10.1155/S0161171202207188. 1 949 693
-
(2002)
Int. J. Math. Math. Sci.
, vol.32
, pp. 641-699
-
-
Cotton, A.1
Freeman, D.2
-
10
-
-
0242334665
-
Minimal perimeter for N identical bubbles in two dimensions: Calculations and simulations
-
DOI 10.1080/1478643031000077351
-
S.J. COX, F. GRANER, M. FÁTIMA VAZ, C. MONNEREUA-PITTET, and N. PITTET, Minimal perimeter for N identical bubbles in two dimensions: calculations and simulations, Philosophical Magazine 83 (2003), DOI 10.1080/1478643031000077351, 1393-1406, http://dx.doi.org/10.1080/ 1478643031000077351.
-
(2003)
Philosophical Magazine
, vol.83
, pp. 1393-1406
-
-
Cox, S.J.1
Graner, F.2
Fátima Vaz, M.3
Monnereua-Pittet, C.4
Pittet, N.5
-
11
-
-
1642292735
-
-
Ph. D. thesis, University of California, Davis
-
RICHARD PAUL DEVERBAUX VAUGHN, Planar soap bubbles, Ph. D. thesis, University of California, Davis, 1998.
-
(1998)
Planar Soap Bubbles
-
-
Paul, R.1
Vaughn, D.2
-
13
-
-
17044444108
-
Equilibrium energies of 2D fluid foams
-
DOI 10.1103/PhysRevE.63.011402
-
F. GRANER, Y. JIANG, E. JANIAUD, and C. FLAMENT, Equilibrium energies of 2D fluid foams, Phys. Rev. E. 63 (2001), DOI 10.1103/PhysRevE.63.011402, 011402-1-011402-13, http://dx.doi.org/10.1103/PhysRevE.63.011402.
-
(2001)
Phys. Rev. E.
, vol.63
, pp. 114021-1140213
-
-
Graner, F.1
Jiang, Y.2
Janiaud, E.3
Flament, C.4
-
14
-
-
0034408906
-
Double bubbles minimize
-
MR 2002d:53018
-
JOEL HASS and ROGER SCHLAFLY, Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459-515. MR 2002d:53018
-
(2000)
Ann. of Math. (2)
, vol.151
, pp. 459-515
-
-
Hass, J.1
Schlafly, R.2
-
15
-
-
0035536105
-
The shortest enclosure of two connected regions in a corner
-
MR 2002h:53008
-
G. CHRISTOPHER HRUSKA, DMITRIY LEYKEKHMAN, DANIEL PINZON, BRIAN J. SHAY, and JOEL FOISY, The shortest enclosure of two connected regions in a corner, Rocky Mountain J. Math. 31 (2001), 437-482. MR 2002h:53008
-
(2001)
Rocky Mountain J. Math.
, vol.31
, pp. 437-482
-
-
Christopher Hruska, G.1
Leykekhman, D.2
Pinzon, D.3
Shay, B.J.4
Foisy, J.5
-
16
-
-
0035997999
-
Proof of the double bubble conjecture
-
MR 2003c:53013
-
MICHAEL HUTCHINGS, FRANK MORGAN, MANUEL RITORÉ, and ANTONIO ROS, Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459-489. MR 2003c:53013
-
(2002)
Ann. of Math. (2)
, vol.155
, pp. 459-489
-
-
Hutchings, M.1
Morgan, F.2
Ritoré, M.3
Ros, A.4
-
18
-
-
84966236954
-
(M, ε, δ)-minimal curve regularity
-
MR 94e:49018
-
FRANK MORGAN, (M, ε, δ)-minimal curve regularity, Proc. Amer. Math. Soc. 120 (1994), 677-686. MR 94e:49018
-
(1994)
Proc. Amer. Math. Soc.
, vol.120
, pp. 677-686
-
-
Morgan, F.1
-
19
-
-
84972580766
-
2 and in surfaces
-
MR 96a:58064
-
2 and in surfaces, Pacific J. Math. 165 (1994), 347-361. MR 96a:58064
-
(1994)
Pacific J. Math.
, vol.165
, pp. 347-361
-
-
-
20
-
-
0036720647
-
2
-
DOI 10.1090/S0002-9939-02-06640-6, (electronic), MR 2003c:53016
-
2, Proc. Amer. Math. Soc. 130 (2002), DOI 10.1090/S0002-9939-02-06640-6, 2745-2751 (electronic), http://dx.doi.org/ 10.1090/S0002-9939-02-06640-6. MR 2003c:53016
-
(2002)
Proc. Amer. Math. Soc.
, vol.130
, pp. 2745-2751
-
-
Morgan, F.1
Wichiramala, W.2
-
23
-
-
0005644465
-
-
Ph. D. Thesis, University of Illinois, Urbana-Champaign
-
WACHARIN WICHIRAMALA, The planar triple bubble problem, Ph. D. Thesis, University of Illinois, Urbana-Champaign, 2002.
-
(2002)
The Planar Triple Bubble Problem
-
-
Wichiramala, W.1
|