메뉴 건너뛰기




Volumn 53, Issue 3, 2004, Pages 883-904

Least-perimeter partitions of the disk into three regions of given areas

Author keywords

Isoperimetric partition; Stability; Stable

Indexed keywords


EID: 4944232623     PISSN: 00222518     EISSN: None     Source Type: Journal    
DOI: 10.1512/iumj.2004.53.2489     Document Type: Article
Times cited : (13)

References (23)
  • 1
    • 84968518930 scopus 로고
    • Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints
    • MR 50 #14438
    • F. J. ALMGREN Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Bull. Amer. Math. Soc. 81 (1975), 151-154. MR 50 #14438
    • (1975) Bull. Amer. Math. Soc. , vol.81 , pp. 151-154
    • Almgren Jr., F.J.1
  • 2
    • 1642289454 scopus 로고
    • Isoperimetric divisions into several cells with natural boundary, Intuitive Geometry (Siófok, 1985)
    • North-Holland, Amsterdam. MR 88j:52023
    • M. N. BLEICHER, Isoperimetric divisions into several cells with natural boundary, Intuitive Geometry (Siófok, 1985). Colloq. Math. Soc. János Bolyai, vol. 48, North-Holland, Amsterdam, 1987, pp. 63-84. MR 88j:52023
    • (1987) Colloq. Math. Soc. János Bolyai , vol.48 , pp. 63-84
    • Bleicher, M.N.1
  • 3
    • 1542785057 scopus 로고    scopus 로고
    • Isoperimetric networks in the Euclidean plane
    • MR 96k:52014
    • _, Isoperimetric networks in the Euclidean plane, Studia Sci. Math. Hungar. 31 (1996), 455-478. MR 96k:52014
    • (1996) Studia Sci. Math. Hungar. , vol.31 , pp. 455-478
  • 4
    • 1542422412 scopus 로고
    • Isoperimetric division into a finite number of cells in the plane
    • MR 89a:52036
    • MICHAEL N. BLEICHER, Isoperimetric division into a finite number of cells in the plane, Studia Sci. Math. Hungar. 22 (1987), 123-137. MR 89a:52036
    • (1987) Studia Sci. Math. Hungar. , vol.22 , pp. 123-137
    • Bleicher, M.N.1
  • 8
    • 4944231510 scopus 로고    scopus 로고
    • The double bubble problem in spherical space and hyperbolic space
    • DOI 10.1155/S0161171202207188. 1 949 693
    • ANDREW COTTON and DAVID FREEMAN, The double bubble problem in spherical space and hyperbolic space, Int. J. Math. Math. Sci. 32 (2002), DOI 10.1155/S0161171202207188, 641-699, http://dx.doi.org/10.1155/S0161171202207188. 1 949 693
    • (2002) Int. J. Math. Math. Sci. , vol.32 , pp. 641-699
    • Cotton, A.1    Freeman, D.2
  • 10
    • 0242334665 scopus 로고    scopus 로고
    • Minimal perimeter for N identical bubbles in two dimensions: Calculations and simulations
    • DOI 10.1080/1478643031000077351
    • S.J. COX, F. GRANER, M. FÁTIMA VAZ, C. MONNEREUA-PITTET, and N. PITTET, Minimal perimeter for N identical bubbles in two dimensions: calculations and simulations, Philosophical Magazine 83 (2003), DOI 10.1080/1478643031000077351, 1393-1406, http://dx.doi.org/10.1080/ 1478643031000077351.
    • (2003) Philosophical Magazine , vol.83 , pp. 1393-1406
    • Cox, S.J.1    Graner, F.2    Fátima Vaz, M.3    Monnereua-Pittet, C.4    Pittet, N.5
  • 11
    • 1642292735 scopus 로고    scopus 로고
    • Ph. D. thesis, University of California, Davis
    • RICHARD PAUL DEVERBAUX VAUGHN, Planar soap bubbles, Ph. D. thesis, University of California, Davis, 1998.
    • (1998) Planar Soap Bubbles
    • Paul, R.1    Vaughn, D.2
  • 13
    • 17044444108 scopus 로고    scopus 로고
    • Equilibrium energies of 2D fluid foams
    • DOI 10.1103/PhysRevE.63.011402
    • F. GRANER, Y. JIANG, E. JANIAUD, and C. FLAMENT, Equilibrium energies of 2D fluid foams, Phys. Rev. E. 63 (2001), DOI 10.1103/PhysRevE.63.011402, 011402-1-011402-13, http://dx.doi.org/10.1103/PhysRevE.63.011402.
    • (2001) Phys. Rev. E. , vol.63 , pp. 114021-1140213
    • Graner, F.1    Jiang, Y.2    Janiaud, E.3    Flament, C.4
  • 14
    • 0034408906 scopus 로고    scopus 로고
    • Double bubbles minimize
    • MR 2002d:53018
    • JOEL HASS and ROGER SCHLAFLY, Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459-515. MR 2002d:53018
    • (2000) Ann. of Math. (2) , vol.151 , pp. 459-515
    • Hass, J.1    Schlafly, R.2
  • 16
    • 0035997999 scopus 로고    scopus 로고
    • Proof of the double bubble conjecture
    • MR 2003c:53013
    • MICHAEL HUTCHINGS, FRANK MORGAN, MANUEL RITORÉ, and ANTONIO ROS, Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459-489. MR 2003c:53013
    • (2002) Ann. of Math. (2) , vol.155 , pp. 459-489
    • Hutchings, M.1    Morgan, F.2    Ritoré, M.3    Ros, A.4
  • 18
    • 84966236954 scopus 로고
    • (M, ε, δ)-minimal curve regularity
    • MR 94e:49018
    • FRANK MORGAN, (M, ε, δ)-minimal curve regularity, Proc. Amer. Math. Soc. 120 (1994), 677-686. MR 94e:49018
    • (1994) Proc. Amer. Math. Soc. , vol.120 , pp. 677-686
    • Morgan, F.1
  • 19
    • 84972580766 scopus 로고
    • 2 and in surfaces
    • MR 96a:58064
    • 2 and in surfaces, Pacific J. Math. 165 (1994), 347-361. MR 96a:58064
    • (1994) Pacific J. Math. , vol.165 , pp. 347-361
  • 20
    • 0036720647 scopus 로고    scopus 로고
    • 2
    • DOI 10.1090/S0002-9939-02-06640-6, (electronic), MR 2003c:53016
    • 2, Proc. Amer. Math. Soc. 130 (2002), DOI 10.1090/S0002-9939-02-06640-6, 2745-2751 (electronic), http://dx.doi.org/ 10.1090/S0002-9939-02-06640-6. MR 2003c:53016
    • (2002) Proc. Amer. Math. Soc. , vol.130 , pp. 2745-2751
    • Morgan, F.1    Wichiramala, W.2
  • 23
    • 0005644465 scopus 로고    scopus 로고
    • Ph. D. Thesis, University of Illinois, Urbana-Champaign
    • WACHARIN WICHIRAMALA, The planar triple bubble problem, Ph. D. Thesis, University of Illinois, Urbana-Champaign, 2002.
    • (2002) The Planar Triple Bubble Problem
    • Wichiramala, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.