-
1
-
-
0003353441
-
The geometry of discrete groups
-
Springer-Verlag, New York, MathSciNet. Zentralblatt für Mathematik
-
A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MathSciNet. Zentralblatt für Mathematik.
-
(1983)
Graduate Texts in Mathematics
, vol.91
-
-
Beardon, A.F.1
-
2
-
-
2142787494
-
-
preprint
-
M. Carrión, J. Corneli, G. Walsh, and S. Beheshti, Double bubbles in the $3$-torus, preprint, 2002, http://www.arXiv.org/math.DG/0208120.
-
(2002)
Double Bubbles in the $3$-torus
-
-
Carrión, M.1
Corneli, J.2
Walsh, G.3
Beheshti, S.4
-
3
-
-
17844400434
-
On surfaces of revolution with constant mean curvature in hyperbolic space
-
(French). MathSciNet. Zentralblatt für Mathematik
-
P. Castillon, Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique [On surfaces of revolution with constant mean curvature in hyperbolic space], Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 3, 379-400 (French). MathSciNet. Zentralblatt für Mathematik.
-
(1998)
Ann. Fac. Sci. Toulouse Math. (6)
, vol.7
, Issue.3
, pp. 379-400
-
-
Castillon, P.1
-
4
-
-
17844362322
-
-
NSF "SMALL" undergraduate research geometry group report, Williams College, Massachusetts, Zentralblatt für Mathematik
-
J. Cornell, P. Holt, N. Leger, and E. Schoenfeld, Partial results on double bubbles in $\mathbf (S) ̂3$ and $\mathbf (H) ̂3$, NSF "SMALL" undergraduate research geometry group report, Williams College, Massachusetts, 2001. Zentralblatt für Mathematik.
-
(2001)
Partial Results on Double Bubbles in $\Mathbf (S) ̂3$ and $\Mathbf (H) ̂3$
-
-
Cornell, J.1
Holt, P.2
Leger, N.3
Schoenfeld, E.4
-
6
-
-
77955696241
-
The standard double soap bubble in $\mathbf (R) ̂2$ uniquely minimizes perimeter
-
MathSciNet. Zentralblatt für Mathematik
-
J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba, The standard double soap bubble in $\mathbf (R) ̂2$ uniquely minimizes perimeter, Pacific J. Math. 159 (1993), no. 1, 47-59. MathSciNet. Zentralblatt für Mathematik.
-
(1993)
Pacific J. Math.
, vol.159
, Issue.1
, pp. 47-59
-
-
Foisy, J.1
Alfaro, M.2
Brock, J.3
Hodges, N.4
Zimba, J.5
-
7
-
-
0040740037
-
Spherical surfaces with constant mean curvature in hyperbolic space
-
MathSciNet. Zentralblatt für Mathematik
-
J. de M. Gomes, Spherical surfaces with constant mean curvature in hyperbolic space, Bol. Soc. Brasil. Mat. 18 (1987), no. 2, 49-73. MathSciNet. Zentralblatt für Mathematik.
-
(1987)
Bol. Soc. Brasil. Mat.
, vol.18
, Issue.2
, pp. 49-73
-
-
Gomes, J.D.M.1
-
8
-
-
0002100604
-
The double bubble conjecture
-
CrossRef. MathSciNet. Zentralblatt für Mathematik
-
J. Mass, M. Hutchings, and R. Schlafly, The double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc. 1 (1995), no. 3, 98-102. CrossRef. MathSciNet. Zentralblatt für Mathematik.
-
(1995)
Electron. Res. Announc. Amer. Math. Soc.
, vol.1
, Issue.3
, pp. 98-102
-
-
Mass, J.1
Hutchings, M.2
Schlafly, R.3
-
9
-
-
0034408906
-
Double bubbles minimize
-
MathSciNet. Zentralblatt für Mathematik
-
J. Mass and R. Schlafly, Double bubbles minimize, Ann. of Math. (2) 151 (2000), no. 2, 459-515. MathSciNet. Zentralblatt für Mathematik.
-
(2000)
Ann. of Math. (2)
, vol.151
, Issue.2
, pp. 459-515
-
-
Mass, J.1
Schlafly, R.2
-
10
-
-
0001043871
-
The structure of area-minimizing double bubbles
-
MathSciNet. Zentralblatt für Mathematik
-
M. Hutchings, The structure of area-minimizing double bubbles, J. Geom. Anal. 7 (1997), no. 2, 285-304. MathSciNet. Zentralblatt für Mathematik.
-
(1997)
J. Geom. Anal.
, vol.7
, Issue.2
, pp. 285-304
-
-
Hutchings, M.1
-
11
-
-
0035997999
-
Proof of the double bubble conjecture
-
M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, Proof of the double bubble conjecture, Ann. of Math. 155 (2002), no. 2, 459-489.
-
(2002)
Ann. of Math.
, vol.155
, Issue.2
, pp. 459-489
-
-
Hutchings, M.1
Morgan, F.2
Ritoré, M.3
Ros, A.4
-
12
-
-
0009930582
-
The perimeter-minimizing enclosure of two areas in $Ŝ 2$
-
MathSciNet. Zentralblatt für Mathematik
-
J. D. Masters, The perimeter-minimizing enclosure of two areas in $Ŝ2$, Real Anal. Exchange 22 (1996/97), no. 2, 645-654. MathSciNet. Zentralblatt für Mathematik.
-
(1996)
Real Anal. Exchange
, vol.22
, Issue.2
, pp. 645-654
-
-
Masters, J.D.1
-
14
-
-
0035584526
-
Proof of the double bubble conjecture
-
MathSciNet
-
F. Morgan, Proof of the double bubble conjecture, Amer. Math. Monthly 108 (2001), no. 3, 193-205. MathSciNet.
-
(2001)
Amer. Math. Monthly
, vol.108
, Issue.3
, pp. 193-205
-
-
Morgan, F.1
-
15
-
-
0036720647
-
The standard double bubble is the unique stable double bubble in $\mathbf (R) ̂2$
-
CrossRef. MathSciNet
-
F. Morgan and W. Wichiramala, The standard double bubble is the unique stable double bubble in $\mathbf (R) ̂2$, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2745-2751. CrossRef. MathSciNet.
-
(2002)
Proc. Amer. Math. Soc.
, vol.130
, Issue.9
, pp. 2745-2751
-
-
Morgan, F.1
Wichiramala, W.2
-
16
-
-
0003274790
-
Foundations of hyperbolic manifolds
-
Springer-Verlag, New York, MathSciNet. Zentralblatt für Mathematik
-
J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MathSciNet. Zentralblatt für Mathematik.
-
(1994)
Graduate Texts in Mathematics
, vol.149
-
-
Ratcliffe, J.G.1
-
17
-
-
17844368456
-
Proof of the double bubble conjecture in $\mathbf (R) ̂4$ and certain higher dimensional cases
-
to appear in
-
B. W. Reichardt, C. Heilmann, Y. Y. Lai, and A. Spielman, Proof of the double bubble conjecture in $\mathbf (R) ̂4$ and certain higher dimensional cases, to appear in Pacific J. Math.
-
Pacific J. Math.
-
-
Reichardt, B.W.1
Heilmann, C.2
Lai, Y.Y.3
Spielman, A.4
-
18
-
-
84972556269
-
A generalization of a theorem of Delaunay to rotational $W$-hypersurfaces of $\sigma_1$-type in $Ĥ (n+1) $ and $Ŝ (n+1) $
-
MathSciNet. Zentralblatt für Mathematik
-
I. Sterling, A generalization of a theorem of Delaunay to rotational $W$-hypersurfaces of $\sigma_1$-type in $Ĥ (n+1) $ and $Ŝ (n+1) $, Pacific J. Math. 127 (1987), no. 1, 187-197. MathSciNet. Zentralblatt für Mathematik.
-
(1987)
Pacific J. Math.
, vol.127
, Issue.1
, pp. 187-197
-
-
Sterling, I.1
-
19
-
-
0030373857
-
Open problems in soap bubble geometry
-
MathSciNet. Zentralblatt für Mathematik
-
J. M. Sullivan and F. Morgan, Open problems in soap bubble geometry, Internat. J. Math. 7 (1996), no. 6, 833-842. MathSciNet. Zentralblatt für Mathematik.
-
(1996)
Internat. J. Math.
, vol.7
, Issue.6
, pp. 833-842
-
-
Sullivan, J.M.1
Morgan, F.2
|