-
2
-
-
0001246518
-
On the First Variation of a Varifold
-
William K. Allard. “On the First Variation of a Varifold.” Ann. of Math.(2) 95 (1972), 418-446.
-
(1972)
Ann. Of Math
, vol.95
, Issue.2
, pp. 418-446
-
-
Allard, W.K.1
-
4
-
-
0003816477
-
-
Version 2.14World Wide Web
-
Kenneth A. Brakke. Surface Evolver, Version 2.14. Available from World Wide Web (http://www.susqu.edU/facstaff/b/brakke/evolver/evolver.html), 1999.
-
(1999)
Surface Evolver
-
-
Brakke, K.A.1
-
5
-
-
0142196818
-
-
PreprintWorld Wide Web
-
Joseph Corneli, Paul Holt, George Lee, Nicholas Leger, Eric Schoenfeld, and Benjamin Steinhurst. “The Double Bubble Problem on the Flat Two- Torus.” Preprint, Available from World Wide Web (http: arxiv.org), 2003.
-
(2003)
The Double Bubble Problem on the Flat Two- Torus
-
-
Corneli, J.1
Holt, P.2
Lee, G.3
Leger, N.4
Schoenfeld, E.5
Steinhurst, B.6
-
7
-
-
0003934515
-
-
Oxford, UK: Oxford University Press
-
Thomas Heath. A History of Greek Mathematics, Volume II. Oxford, UK: Oxford University Press, 1960.
-
(1960)
A History of Greek Mathematics
, vol.2
-
-
Heath, T.1
-
8
-
-
0003807472
-
-
Princeton, NJ: Princeton University Press
-
Witold Hurewicz and Henry Wallman. Dimension Theory. Princeton, NJ: Princeton University Press, 1941.
-
(1941)
Dimension Theory
-
-
Hurewicz, W.1
Wallman, H.2
-
9
-
-
0001043871
-
The Structure of Area- Minimizing Double Bubbles
-
Michael Hutchings. “The Structure of Area- Minimizing Double Bubbles.” J. Geom. Anal. 7 (1997), 285-304.
-
(1997)
J. Geom. Anal.
, vol.7
, pp. 285-304
-
-
Hutchings, M.1
-
10
-
-
85009823870
-
Proof of the Double Bubble Conjecture
-
electronic
-
Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros. “Proof of the Double Bubble Conjecture.” Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 45-49 (electronic).
-
(2000)
Electron. Res. Announc. Amer. Math. Soc
, vol.6
, pp. 45-49
-
-
Hutchings, M.1
Morgan, F.2
Ritoré, M.3
Ros, A.4
-
11
-
-
0035997999
-
Proof of the Double Bubble Conjecture
-
Michael Hutchings, Prank Morgan, Manuel Ritoré, and Antonio Ros. “Proof of the Double Bubble Conjecture.” Ann. Math. 155 (2002), 459-489.
-
(2002)
Ann. Math.
, vol.155
, pp. 459-489
-
-
Hutchings, M.1
Morgan, P.2
Ritoré, M.3
Ros, A.4
-
12
-
-
0038796861
-
Comparing the Weaire-Phelan Equal-Volume Foam to Kelvins Foam
-
Robert B. Kusner and John M. Sullivan. “Comparing the Weaire-Phelan Equal-Volume Foam to Kelvin’s Foam.” Forma 11 (1996), 233-242.
-
(1996)
Forma
, vol.11
, pp. 233-242
-
-
Kusner, R.B.1
Sullivan, J.M.2
-
14
-
-
0142227932
-
Small Perimeter-Minimizing Double Bubbles in Compact Surfaces are Standard
-
Univ. of Miss., March 23-24, 2001
-
Frank Morgan. “Small Perimeter-Minimizing Double Bubbles in Compact Surfaces are Standard.” In Electronic Proceedings of the 78th Annual meeting of the Lousiana/Mississippi Section of the MAA. Univ. of Miss., March 23-24, 2001. Available from World Wide Web (http://www.mc.edu/campus/users/travis/maa/proceedings/spring2001/), 2001.
-
(2001)
Electronic Proceedings of the 78Th Annual Meeting of the Lousiana/Mississippi Section of the MAA
-
-
Morgan, F.1
-
15
-
-
0001192899
-
Some Sharp Isoperimetric Theorems for Rie- mannian Manifolds
-
Frank Morgan and David L. Johnson. “Some Sharp Isoperimetric Theorems for Rie- mannian Manifolds.” Indiana U. Math J. 49 (2000), 1017-1041.
-
(2000)
Indiana U. Math J.
, vol.49
, pp. 1017-1041
-
-
Morgan, F.1
Johnson, D.L.2
-
16
-
-
85039626905
-
Geometric Measure Theory and the Proof of the Double Bubble Conjecture
-
MSRI, 2001. To appearWorld Wide Web
-
Frank Morgan and Manuel Ritoré. “Geometric Measure Theory and the Proof of the Double Bubble Conjecture.” Proc. Clay Research Institution Summer School, MSRI, 2001. To appear. Available from World Wide Web (http://www.ugr.es/~ritore/preprints/course.pdf), 2001.
-
Proc. Clay Research Institution Summer School
-
-
Morgan, F.1
Ritoré, M.2
-
18
-
-
0037310461
-
Proof of the Double Bubble Conjecture in R4 and Certain Higher Dimensional Cases
-
Ben W. Reichardt, Cory Heilmann, Yuan Y. Lai, and Anita Spielmann. “Proof of the Double Bubble Conjecture in R4 and Certain Higher Dimensional Cases.” Pacific J. Math. 208 (2003), 347-366.
-
(2003)
Pacific J. Math.
, vol.208
, pp. 347-366
-
-
Reichardt, B.W.1
Heilmann, C.2
Lai, Y.Y.3
Spielmann, A.4
-
19
-
-
0031285621
-
Applications of Compactness Results for Harmonic Maps to Stable Constant Mean Curvature Surfaces
-
Manuel Ritoré. “Applications of Compactness Results for Harmonic Maps to Stable Constant Mean Curvature Surfaces.” Math. Z. 226 (1997), 465-481.
-
(1997)
Math. Z.
, vol.226
, pp. 465-481
-
-
Ritoré, M.1
-
20
-
-
21844487214
-
The Spaces of Index One Minimal Surfaces and Constant Mean Curvature Surfaces Embedded in Flat Three Manifolds
-
Manuel Ritoré and Antonio Ros. “The Spaces of Index One Minimal Surfaces and Constant Mean Curvature Surfaces Embedded in Flat Three Manifolds.” Trans. Amer. Math. Soc. 348 (1996), 391-410.
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, pp. 391-410
-
-
Ritoré, M.1
Ros, A.2
-
21
-
-
8644240623
-
The Isoperimetric Problem
-
MSRI, World Wide Web, 2001
-
Antonio Ros. “The Isoperimetric Problem.” Proc. Clay Research Institution Summer School, MSRI, 2001. To appear. Available from World Wide Web (http://www.ugr.es/~aros/isoper.pdf), 2001.
-
(2001)
Proc. Clay Research Institution Summer School
-
-
Ros, A.1
-
22
-
-
0009924355
-
Beweis des Satzes, dass die Kugel kleinere Oberflache besitzt als jeder andere Korper gleichen Volumens
-
Hermann A. Schwarz. “Beweis des Satzes, dass die Kugel kleinere Oberflache besitzt als jeder andere Korper gleichen Volumens.” Nachrichten Koniglichen Gesellschaft Wissenschaften Gottingen (1884), 1-13.
-
(1884)
Nachrichten Koniglichen Gesellschaft Wissenschaften Gottingen
, pp. 1-13
-
-
Schwarz, H.A.1
-
23
-
-
0001841087
-
Lectures on Geometric Measure Theory
-
Canberra, Australia: Centre for Mathematical Analysis, Australian National University
-
Leon Simon. “Lectures on Geometric Measure Theory.” In Proc. Centre Math. Anal. Australian Nat. U. Vol. 3. Canberra, Australia: Centre for Mathematical Analysis, Australian National University, 1984.
-
(1984)
Proc. Centre Math. Anal. Australian Nat. U
, vol.3
-
-
Simon, L.1
-
24
-
-
0001069766
-
The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces
-
Jean E. Taylor. “The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces.” Ann. of Math. (2) 103:3 (1976), 489-539.
-
(1976)
Ann. Of Math
, vol.103-3
, Issue.2
, pp. 489-539
-
-
Taylor, J.E.1
|