메뉴 건너뛰기




Volumn 19, Issue 7, 2008, Pages 1666-1673

Dynamically determining neighborhood parameter for locally linear embedding

Author keywords

Dimensionality reduction; Hessian locally linear embedding; Manifold learning; Neighborhood size

Indexed keywords

ESTIMATION; GEODESY; MATRIX ALGEBRA;

EID: 48549107899     PISSN: 10009825     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1001.2008.01666     Document Type: Article
Times cited : (17)

References (20)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 2
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 3
    • 28444473249 scopus 로고    scopus 로고
    • Supervised nonlinear dimensionality reduction for visualization and classification
    • Geng X, Zhan DC, Zhou ZH. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. on Systems, Man and Cybernetics, 2005, 35(6): 1098-1107.
    • (2005) IEEE Trans. on Systems, Man and Cybernetics , vol.35 , Issue.6 , pp. 1098-1107
    • Geng, X.1    Zhan, D.C.2    Zhou, Z.H.3
  • 5
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding, techniques for high-dimensional data
    • Donoho DL, Grimes C. Hessian eigenmaps: Locally linear embedding, techniques for high-dimensional data. PNAS, 2003, 100(10): 5591-5596.
    • (2003) PNAS , vol.100 , Issue.10 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 8
    • 48549096711 scopus 로고    scopus 로고
    • Overview of manifold learning
    • in Chinese
    • Xu R, Jiang F, Yao HX. Overview of manifold learning. CAAI Trans. on Intelligent Systems, 2006, 1(1): 44-51 (in Chinese with English abstract).
    • (2006) CAAI Trans. on Intelligent Systems , vol.1 , Issue.1 , pp. 44-51
    • Xu, R.1    Jiang, F.2    Yao, H.X.3
  • 9
    • 24044550981 scopus 로고    scopus 로고
    • Study on the low-dimensional embedding and the embedding dimensionality of manifold of high-dimensional data
    • in Chinese
    • Zhao LW, Luo SW, Zhao YC, Liu YH. Study on the low-dimensional embedding and the embedding dimensionality of manifold of high-dimensional data. Journal of Software, 2005, 16(8): 1423-1430 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/16/1423.htm.
    • (2005) Journal of Software , vol.16 , Issue.8 , pp. 1423-1430
    • Zhao, L.W.1    Luo, S.W.2    Zhao, Y.C.3    Liu, Y.H.4
  • 10
    • 30544433615 scopus 로고    scopus 로고
    • Investigating manifold learning algorithms based on magnification factors and principal spread directions
    • in Chinese
    • He L, Zhang JP, Zhou ZH. Investigating manifold learning algorithms based on magnification factors and principal spread directions. Chinese Journal of Computers, 2005, 28(12): 2000-2009 (in Chinese with English abstract).
    • (2005) Chinese Journal of Computers , vol.28 , Issue.12 , pp. 2000-2009
    • He, L.1    Zhang, J.P.2    Zhou, Z.H.3
  • 11
    • 0037016775 scopus 로고    scopus 로고
    • The ISOMAP algorithm and topological stability
    • Balasubramanian M, Schwartz EL. The ISOMAP algorithm and topological stability. Science, 2002, 295(5552): 7.
    • (2002) Science , vol.295 , Issue.5552 , pp. 7
    • Balasubramanian, M.1    Schwartz, E.L.2
  • 12
    • 27644599805 scopus 로고    scopus 로고
    • Building k edge-disjoint spanning trees of minimum total length for isometric data embedding
    • Yang L. Building k edge-disjoint spanning trees of minimum total length for isometric data embedding. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1680-1683.
    • (2005) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.27 , Issue.10 , pp. 1680-1683
    • Yang, L.1
  • 13
    • 33749546693 scopus 로고    scopus 로고
    • Non-Linear dimensionality reduction by locally linear ISOMAPs
    • Springer-Verlag
    • Saxena A, Gupta A, Mukerjee A. Non-Linear dimensionality reduction by locally linear ISOMAPs. Lecture Notes in Computer Science 3316. Springer-Verlag, 2004. 1038-1043. http://www.springerlink.com/content/14754g3k7gp41t2y/.
    • (2004) Lecture Notes in Computer Science , vol.3316 , pp. 1038-1043
    • Saxena, A.1    Gupta, A.2    Mukerjee, A.3
  • 15
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the ISOMAP algorithm
    • Samko O, Marshall AD, Rosin PL. Selection of the optimal parameter value for the ISOMAP algorithm. Pattern Recognition Letters, 2006, 27: 968-979.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 968-979
    • Samko, O.1    Marshall, A.D.2    Rosin, P.L.3
  • 16
    • 48549088420 scopus 로고    scopus 로고
    • Locally adaptive non linear dimensionality reduction
    • in Chinese
    • Hou YX, Wu JY, He PL. Locally adaptive non linear dimensionality reduction. Computer Applications, 2006, 26(4): 895-897 (in Chinese with English abstract).
    • (2006) Computer Applications , vol.26 , Issue.4 , pp. 895-897
    • Hou, Y.X.1    Wu, J.Y.2    He, P.L.3
  • 17
    • 33749559716 scopus 로고    scopus 로고
    • Clustering-Based nonlinear dimensionality reduction on manifold
    • Springer-Verlag
    • Wen GH, Jiang LJ, Wen J, Shadbolt NR. Clustering-Based nonlinear dimensionality reduction on manifold. Lecture Notes in Artificial Intelligence (LNAI) 4099. Springer-Verlag, 2006. 444-453. http://www.springerlink.com/content/k036115h1w031077/.
    • (2006) Lecture Notes in Artificial Intelligence (LNAI) , vol.4099 , pp. 444-453
    • Wen, G.H.1    Jiang, L.J.2    Wen, J.3    Shadbolt, N.R.4
  • 19
    • 4344591743 scopus 로고    scopus 로고
    • Distance-Preserving projection of high-dimensional data for nonlinear dimensionality reduction
    • Yang L. Distance-Preserving projection of high-dimensional data for nonlinear dimensionality reduction. IEEE Trans. Pattern Analysis and Machine Intelligence, 2004, 26(9): 1243-1247.
    • (2004) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1243-1247
    • Yang, L.1
  • 20
    • 33749569766 scopus 로고    scopus 로고
    • Performing locally linear embedding with adaptable neighborhood size on manifold
    • Springer-Verlag
    • Wen GH, Jiang LJ, Wen J, Shadbolt NR. Performing locally linear embedding with adaptable neighborhood size on manifold. Lecture Notes in Artificial Intelligence (LNAI) 4099. Springer-Verlag, 2006. 985-989. http://www.springerlink.com/content/958007m6vn192017/.
    • (2006) Lecture Notes in Artificial Intelligence (LNAI) , vol.4099 , pp. 985-989
    • Wen, G.H.1    Jiang, L.J.2    Wen, J.3    Shadbolt, N.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.