메뉴 건너뛰기




Volumn 4099 LNAI, Issue , 2006, Pages 985-989

Performing locally linear embedding with adaptable neighborhood size on manifold

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); DATA REDUCTION; DATA STRUCTURES;

EID: 33749569766     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11801603_119     Document Type: Conference Paper
Times cited : (14)

References (12)
  • 1
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis and L.K. Saul: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(2000)2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 2
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S.T.Roweis: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research, 4(2003)119-155
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computing, 15(2003)1373-1396
    • (2003) Neural Computing , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding, techniques for high-dimensional data
    • D.L. Donoho and C. Grimes: Hessian eigenmaps: Locally linear embedding, techniques for high-dimensional data. Proc.Natl.Acad. Sci. U. S. A, 100(2003)5591-5596
    • (2003) Proc.Natl.Acad. Sci. U. S. A. , vol.100 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 5
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum and V. de Silva and J.C. Langford: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science,290(2000)2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 6
    • 0037016775 scopus 로고    scopus 로고
    • The isomap algorithm and topological stability
    • M. Balasubramanian and E.L. Schwartz: The Isomap Algorithm and Topological Stability. Science,295(2002)7-7
    • (2002) Science , vol.295 , pp. 7-7
    • Balasubramanian, M.1    Schwartz, E.L.2
  • 8
    • 27244453471 scopus 로고    scopus 로고
    • Fusion of locally linear embedding and principal component analysis for face recognition (FLLEPCA)
    • Abusham EE, Ngo D, Teoh A: Fusion of locally linear embedding and principal component analysis for face recognition (FLLEPCA). Lecture Notes in Computer Science,3687(2005) 326-333
    • (2005) Lecture Notes in Computer Science , vol.3687 , pp. 326-333
    • Abusham, E.E.1    Ngo, D.2    Teoh, A.3
  • 9
    • 28444473249 scopus 로고    scopus 로고
    • Supervised nonlinear dimensionality reduction for visualization and classification
    • X.Geng and D.C.Zhan and Z.H.Zhou: Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Transactions on Systems, Man and Cybernetics, 35(2005)1098-1107
    • (2005) IEEE Transactions on Systems, Man and Cybernetics , vol.35 , pp. 1098-1107
    • Geng, X.1    Zhan, D.C.2    Zhou, Z.H.3
  • 11
    • 26844477178 scopus 로고    scopus 로고
    • Self-organized locally linear embedding for nonlinear dimensionality reduction
    • Xiao J, Zhou ZT, Hu DW, et al. Self-organized locally linear embedding for nonlinear dimensionality reduction. Lecture Notes in Computer Science,3610(2005) 101-109
    • (2005) Lecture Notes in Computer Science , vol.3610 , pp. 101-109
    • Xiao, J.1    Zhou, Z.T.2    Hu, D.W.3
  • 12
    • 27644599805 scopus 로고    scopus 로고
    • Building k edge-disjoint spanning trees of minimum total length for isometric data embedding
    • Yang L: Building k edge-disjoint spanning trees of minimum total length for isometric data embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2005) 1680-1683
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1680-1683
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.