메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1606-1611

Gene selection and classification using non-linear kernel support vector machines based on gene expression data

Author keywords

Data classification; Gene selection; Support vector machine

Indexed keywords

BIOACTIVITY; BIOMEDICAL ENGINEERING; CLASSIFIERS; CURVE FITTING; DISCRIMINANT ANALYSIS; FACE RECOGNITION; FEATURE EXTRACTION; GEARS; GENE EXPRESSION; IMAGE RETRIEVAL; IMAGE SEGMENTATION; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; NUMBER THEORY; RESEARCH AIRCRAFT; VECTORS;

EID: 48149108189     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCME.2007.4382018     Document Type: Conference Paper
Times cited : (9)

References (19)
  • 1
    • 0000737379 scopus 로고
    • The Secular Variations of Skull Characters in Four Series of Egyptian Skulls
    • Barnard, M. (1935), The Secular Variations of Skull Characters in Four Series of Egyptian Skulls. Annals of Eugenics, 6, 352-371.
    • (1935) Annals of Eugenics , vol.6 , pp. 352-371
    • Barnard, M.1
  • 2
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decision and the quantitative analysis of cDNA microarray images
    • Chen, Y., Dougherty, E. R., & Bittner, M. L. Ratio-based decision and the quantitative analysis of cDNA microarray images. Jour Biomed Optics 364-374 (1997).
    • (1997) Jour Biomed Optics , vol.364-374
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.L.3
  • 3
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, T.P. 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association. 97, 77-87..
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 4
    • 0000764772 scopus 로고
    • The Use of Multiple Measurements in Taxonomic Problems
    • Fisher, R. A. (1936), The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 5
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T.S., Cristianini, N., Duffy, N., Bedarski, D.W., Schummer, M. and Haussler, D. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906-914
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bedarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 6
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 9
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens and J. Vandewalle, (1999) Least squares support vector machine classifiers. Neural Processing Letters 9(3) 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 10
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least squares SVM formulations
    • Feb
    • Keerthi, S. S. and S. K. Shevade. (2003.) SMO algorithm for least squares SVM formulations. Neural Computation, 15(2), Feb.
    • (2003) Neural Computation , vol.15 , Issue.2
    • Keerthi, S.S.1    Shevade, S.K.2
  • 11
    • 0000984930 scopus 로고    scopus 로고
    • How many genes are needed for a discriminant microarray data analysis
    • eds. S.M. Lin and K.F. Johnson Kluwer Academic
    • Li, W. and Yang, Y. 2002. How many genes are needed for a discriminant microarray data analysis. 137-150. in Methods of Microarray Data Analysis, eds. S.M. Lin and K.F. Johnson (Kluwer Academic).
    • (2002) Methods of Microarray Data Analysis , pp. 137-150
    • Li, W.1    Yang, Y.2
  • 14
    • 0037399771 scopus 로고    scopus 로고
    • Classification and feature gene selection using the nor-malized maximum likelihood for discrete regression
    • Tabus, I., Rissenan, J., and Astola, J., (2003) Classification and feature gene selection using the nor-malized maximum likelihood for discrete regression. Signal Processing, 83 pp. 713-727.
    • (2003) Signal Processing , vol.83 , pp. 713-727
    • Tabus, I.1    Rissenan, J.2    Astola, J.3
  • 19
    • 48149087551 scopus 로고    scopus 로고
    • A note on least squares support vector machines,
    • Technical Report, CD-02-09, Control Division, Department of Mechanical Engineering, National University of Singapore
    • W. Chu, S. S. Keerthi and C. J. Ong (2002), A note on least squares support vector machines, Technical Report, CD-02-09, Control Division, Department of Mechanical Engineering, National University of Singapore.
    • (2002)
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.