메뉴 건너뛰기




Volumn 5039 LNCS, Issue , 2008, Pages 245-256

Comparing non-parametric ensemble methods for document clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING METHODS; DOCUMENT CLUSTERING; DOCUMENT COLLECTIONS; ENSEMB LE METHODS; HEIDELBERG (CO); INDIVIDUAL (PSS 544-7); INTERNATIONAL CONFERENCES; NATURAL LANGUAGES; NON-PARAMETRIC; OPTIMAL SOLUTIONS;

EID: 47749151509     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-69858-6_25     Document Type: Conference Paper
Times cited : (7)

References (19)
  • 1
    • 0038156237 scopus 로고    scopus 로고
    • Evaluation of hierarchical clustering algorithms for document datasets
    • Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for document datasets. In: Proc. of CIKM (2002)
    • (2002) Proc. of CIKM
    • Zhao, Y.1    Karypis, G.2
  • 2
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55(3) (2004)
    • (2004) Machine Learning , vol.55 , Issue.3
    • Zhao, Y.1    Karypis, G.2
  • 3
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrica 50 (1985)
    • (1985) Psychometrica , vol.50
    • Milligan, G.W.1    Cooper, M.C.2
  • 4
    • 8644250640 scopus 로고    scopus 로고
    • Document clustering via adaptive subspace iteration
    • Li, T., Ma, S., Ogihara, M.: Document clustering via adaptive subspace iteration. In: Proc. of SIGIR (2004)
    • (2004) Proc. of SIGIR
    • Li, T.1    Ma, S.2    Ogihara, M.3
  • 6
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A.: How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal 41(8) (1998)
    • (1998) The Computer Journal , vol.41 , Issue.8
    • Fraley, C.1    Raftery, A.2
  • 7
    • 32344444908 scopus 로고    scopus 로고
    • A hybrid unsupervised approach for document clustering
    • Surdeanu, M., Turmo, J., Ageno, A.: A hybrid unsupervised approach for document clustering. In: Proc. of KDD (2005)
    • (2005) Proc. of KDD
    • Surdeanu, M.1    Turmo, J.2    Ageno, A.3
  • 9
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl, A., Ghosh, J.: Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (2002)
    • (2002) Journal of Machine Learning Research , vol.3
    • Strehl, A.1    Ghosh, J.2
  • 10
    • 8644269720 scopus 로고    scopus 로고
    • Restrictive clustering and metaclustering for selforganizing document collections
    • Siersdorfer, S., Sizov, S.: Restrictive clustering and metaclustering for selforganizing document collections. In: Proc. of SIGIR (2004)
    • (2004) Proc. of SIGIR
    • Siersdorfer, S.1    Sizov, S.2
  • 11
    • 42449100235 scopus 로고    scopus 로고
    • Efficient ensemble methods for document clustering
    • Technical report, Department of Computer Science, Trinity College Dublin
    • Greene, D., Cunningham, P.: Efficient ensemble methods for document clustering. Technical report, Department of Computer Science, Trinity College Dublin (2006)
    • (2006)
    • Greene, D.1    Cunningham, P.2
  • 14
  • 15
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3) (2000)
    • (2000) Machine Learning , vol.39 , Issue.2-3
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 18
    • 49749142756 scopus 로고    scopus 로고
    • Information theoretic clustering of sparse co-occurrence data
    • Dhillon, I., Guan, Y.: Information theoretic clustering of sparse co-occurrence data. In: Proc. of ICDM (2003)
    • (2003) Proc. of ICDM
    • Dhillon, I.1    Guan, Y.2
  • 19
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006)
    • (2006) Journal of Machine Learning Research , vol.7
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.