-
1
-
-
33845654307
-
The Past, Present, and Future of Silicon Photonics
-
and references therein
-
R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum. Electron. 12, 1678-1687 (2006), and references therein.
-
(2006)
IEEE J. Sel. Top. Quantum. Electron
, vol.12
, pp. 1678-1687
-
-
Soref, R.1
-
2
-
-
37249079878
-
Nonlinear optical phenomena in silicon waveguides: Modeling and applications
-
Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604-16644 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 16604-16644
-
-
Lin, Q.1
Painter, O.J.2
Agrawal, G.P.3
-
3
-
-
22444440730
-
Parametric Raman wavelength conversion in scaled silicon, waveguides
-
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon, waveguides," J. Lightwave Technol. 23, 2094-2102 (2005).
-
(2005)
J. Lightwave Technol
, vol.23
, pp. 2094-2102
-
-
Raghunathan, V.1
Claps, R.2
Dimitropoulos, D.3
Jalali, B.4
-
4
-
-
22744445876
-
Four-wave mixing in silicon wire waveguides
-
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 4629-4637
-
-
Fukuda, H.1
Yamada, K.2
Shoji, T.3
Takahashi, M.4
Tsuchizawa, T.5
Watanabe, T.6
Takahashi, J.7
Itabashi, S.8
-
5
-
-
32644447628
-
High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides
-
H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
-
(2006)
Opt. Express
, vol.14
, pp. 1182-1188
-
-
Rong, H.1
Kuo, Y.2
Liu, A.3
Paniccia, M.4
Cohen, O.5
-
6
-
-
35148854966
-
Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides
-
M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 12949-12958
-
-
Foster, M.A.1
Turner, A.C.2
Salem, R.3
Lipson, M.4
Gaeta, A.L.5
-
7
-
-
33846858885
-
Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon, photonic wires
-
I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon, photonic wires," Opt. Express 15, 1135-1146 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 1135-1146
-
-
Hsieh, I.-W.1
Chen, X.2
Dadap, J.I.3
Panoiu, N.C.4
Osgood Jr., R.M.5
McNab, S.J.6
Vlasov, Y.A.7
-
8
-
-
41649097376
-
Ultra-low power parametric frequency conversion in a silicon microring resonator
-
A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 4881-4887
-
-
Turner, A.C.1
Foster, M.A.2
Gaeta, A.L.3
Lipson, M.4
-
9
-
-
33744547643
-
Ultrabroadband parametric generation and wavelength conversion in silicon waveguides
-
Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
-
(2006)
Opt. Express
, vol.14
, pp. 4786-4799
-
-
Lin, Q.1
Zhang, J.2
Fauchet, P.M.3
Agrawal, G.P.4
-
10
-
-
0038528533
-
Third-order nonlinearities in silicon at telecom wavelengths
-
M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
-
(2003)
Appl. Phys. Lett
, vol.82
, pp. 2954-2956
-
-
Dinu, M.1
Quochi, F.2
Garcia, H.3
-
11
-
-
34248330426
-
Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm
-
A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 191104
-
-
Bristow, A.D.1
Rotenberg, N.2
van Driel, H.M.3
-
12
-
-
34547182860
-
Dispersion of silicon nonlinearities in the near-infrared region
-
Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near-infrared region," Appl. Phys. Lett. 90, 021111 (2007).
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 021111
-
-
Lin, Q.1
Zhang, J.2
Piredda, G.3
Boyd, R.W.4
Fauchet, P.M.5
Agrawal, G.P.6
-
14
-
-
84893989931
-
-
Although the waveguide shown, in Fig. 1 is multimoded over a broad spectral range, higher-order modes have quite different mode profiles and dispersion properties compared with the fundamental quasi-TE mode. They are not likely to participate in the FWM process if the pump and signal, waves propagate predominantly in the fundamental quasi-TE mode
-
Although the waveguide shown, in Fig. 1 is multimoded over a broad spectral range, higher-order modes have quite different mode profiles and dispersion properties compared with the fundamental quasi-TE mode. They are not likely to participate in the FWM process if the pump and signal, waves propagate predominantly in the fundamental quasi-TE mode.
-
-
-
-
15
-
-
84893986904
-
-
The real and imaginary parts of χ(3) are related to Kerr nonlinearity and TPA, respectively [2, An accurate description of SPM, XPM, TPA, and FWM. requires complete information about χ(3, ωi;ωj,-ωk,wl, However, current experimental knowledge is only available for χ3, ωi;ωi, ωiωi, 11,12, As cross-TPA involves the simultaneous absorption of two photons at ωi and ωj, we approximate χ(3, ωi; ωj,-ωj,ωi) ≈ χ(3, ω̄-ω̄,ω̄) where ω̄, ωi, ωj)/)/2. Similarly, FWM involves the annihilation of two pump photons to create a signal and idler photon, and we approximate χ (3)ωs
-
i)* because of the time-reversal symmetry.
-
-
-
-
16
-
-
84893996313
-
-
We fit each set of experimental data (1.2 - 2.2 μm) in Refs. [11, 12] with a fifth-order polynomial, and average them to obtain the silicon nonlinearity. TPA is zero and the Kerr nonlinearity is assumed to be constant for wavelength longer than 2.2 μm.
-
We fit each set of experimental data (1.2 - 2.2 μm) in Refs. [11, 12] with a fifth-order polynomial, and average them to obtain the silicon nonlinearity. TPA is zero and the Kerr nonlinearity is assumed to be constant for wavelength longer than 2.2 μm.
-
-
-
-
18
-
-
84894005239
-
-
For completeness, we have included all possible self- and cross-TPA. and induced free carriers from all the three waves and their combinations in the numerical results of this paper
-
For completeness, we have included all possible self- and cross-TPA. and induced free carriers from all the three waves and their combinations in the numerical results of this paper.
-
-
-
-
19
-
-
16244410151
-
Widely tunable optical parametric generation in a photonic crystal, fiber
-
A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal, fiber," Opt. Lett. 30, 762-764 (2005).
-
(2005)
Opt. Lett
, vol.30
, pp. 762-764
-
-
Chen, A.Y.H.1
Wong, G.K.L.2
Murdoch, S.G.3
Leonhardt, R.4
Harvey, J.D.5
Knight, J.C.6
Wadsworth, W.J.7
Russell, P.S.J.8
-
20
-
-
20444410418
-
Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber
-
Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005).
-
(2005)
Opt. Lett
, vol.30
, pp. 1234-1236
-
-
Deng, Y.1
Lin, Q.2
Lu, F.3
Agrawal, G.P.4
Knox, W.H.5
-
21
-
-
4644364561
-
Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths
-
T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, and J. J. Larsen, "Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths," Opt. Express 12, 4113-4122 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 4113-4122
-
-
Andersen, T.V.1
Hilligsøe, K.M.2
Nielsen, C.K.3
Thøgersen, J.4
Hansen, K.P.5
Keiding, S.R.6
Larsen, J.J.7
-
22
-
-
17544367675
-
Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment
-
M. Borselli, T. J. Johnson, and O. J. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment", Opt. Express 13, 1515-1529 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 1515-1529
-
-
Borselli, M.1
Johnson, T.J.2
Painter, O.J.3
-
23
-
-
19544371920
-
Kerr- Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity
-
T. J. Kippenberg, S.M. Spillane, and K. J. Vahala, "Kerr- Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity," Phys. Rev. Lett. 93, 083904 (2004).
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 083904
-
-
Kippenberg, T.J.1
Spillane, S.M.2
Vahala, K.J.3
-
24
-
-
34247253338
-
An optical fiber-taper probe for wafer-scale microphotonic device characterization
-
C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15, 4745-4752 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 4745-4752
-
-
Michael, C.P.1
Borselli, M.2
Johnson, T.J.3
Chrystal, C.4
Painter, O.5
-
25
-
-
34250188848
-
Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span
-
In practice, a critical coupling over such a broad spectral region is difficult for a straight bus waveguide, but is possible by using a curved bus waveguide with a curvature similar to the resonator. See
-
In practice, a critical coupling over such a broad spectral region is difficult for a straight bus waveguide, but is possible by using a curved bus waveguide with a curvature similar to the resonator. See T. Carmon, S. Y. T. Wang, E. P. Ostby, and K. J. Vahala, "Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span," Opt. Express 15, 7677-7681 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 7677-7681
-
-
Carmon, T.1
Wang, S.Y.T.2
Ostby, E.P.3
Vahala, K.J.4
-
26
-
-
47249138576
-
-
and, Eds, Top. Appl. Phys
-
I. T. Sorokina and K. L. Vodopyanov, Eds., Solid-State Mid-Infrared Laser Sources, Top. Appl. Phys. 89 (2003).
-
(2003)
Solid-State Mid-Infrared Laser Sources
, vol.89
-
-
-
27
-
-
33845638658
-
Propests for silicon mid-IR Raman lasers
-
B. Jalali, V. Raghunathan, R. Shori, S. Fathpour,D. Dimitropoulos, and O. Strafsudd, "Propests for silicon mid-IR Raman lasers," IEEEJ. Sel. Top. Quantum Electron. 12, 1618-1627 (2006).
-
(2006)
IEEEJ. Sel. Top. Quantum Electron
, vol.12
, pp. 1618-1627
-
-
Jalali, B.1
Raghunathan, V.2
Shori, R.3
Fathpour, S.4
Dimitropoulos, D.5
Strafsudd, O.6
-
28
-
-
33749991388
-
Cascaded silicon Raman lasers as mid-infrared sources
-
M. Krause, R. Draheim, H. Renner, and E. Brinkineyer, "Cascaded silicon Raman lasers as mid-infrared sources," IEE Electron. Lett. 42, 1224-1225 (2006).
-
(2006)
IEE Electron. Lett
, vol.42
, pp. 1224-1225
-
-
Krause, M.1
Draheim, R.2
Renner, H.3
Brinkineyer, E.4
-
29
-
-
40249091482
-
A cascaded silicon Raman laser
-
H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, "A cascaded silicon Raman laser," Nature Photon. 2, 170 (2008).
-
(2008)
Nature Photon
, vol.2
, pp. 170
-
-
Rong, H.1
Xu, S.2
Cohen, O.3
Raday, O.4
Lee, M.5
Sih, V.6
Paniccia, M.7
-
30
-
-
14844330709
-
Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper
-
P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 801-820
-
-
Barclay, P.E.1
Srinivasan, K.2
Painter, O.3
|