메뉴 건너뛰기




Volumn 227, Issue 17, 2008, Pages 8107-8129

Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes

Author keywords

Convergence error measure; Equivalent equation; Family of paths; Formally path consistent scheme; Nonconservative hyperbolic system; Shock wave

Indexed keywords

ERRORS; FINITE DIFFERENCE METHOD; PHASE SPACE METHODS; SHOCK WAVES;

EID: 47049112379     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2008.05.012     Document Type: Article
Times cited : (202)

References (32)
  • 2
    • 43049126534 scopus 로고    scopus 로고
    • Nonlinear projection methods for multi-entropies Navier-Stokes systems
    • Berthon C., and Coquel F. Nonlinear projection methods for multi-entropies Navier-Stokes systems. Math. Comput. 76 (2007) 1163-1194
    • (2007) Math. Comput. , vol.76 , pp. 1163-1194
    • Berthon, C.1    Coquel, F.2
  • 3
    • 85189837598 scopus 로고    scopus 로고
    • C. Berthon, F. Coquel, P.G. LeFloch, Why many theories of shock waves are necessary. Kinetic relations for nonconservative systems, unpublished notes.
    • C. Berthon, F. Coquel, P.G. LeFloch, Why many theories of shock waves are necessary. Kinetic relations for nonconservative systems, unpublished notes.
  • 4
    • 85189836930 scopus 로고    scopus 로고
    • F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Math., Birkhäuser Verlag, Bäsel, 2004.
    • F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Math., Birkhäuser Verlag, Bäsel, 2004.
  • 5
    • 33746371365 scopus 로고    scopus 로고
    • High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems
    • Castro M.J., Gallardo J.M., and Parés C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75 (2006) 1103-1134
    • (2006) Math. Comput. , vol.75 , pp. 1103-1134
    • Castro, M.J.1    Gallardo, J.M.2    Parés, C.3
  • 6
    • 35348906146 scopus 로고    scopus 로고
    • On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas
    • Castro M.J., Gallardo J.M., and Parés C. On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227 (2007) 574-601
    • (2007) J. Comput. Phys. , vol.227 , pp. 574-601
    • Castro, M.J.1    Gallardo, J.M.2    Parés, C.3
  • 8
    • 0035631410 scopus 로고    scopus 로고
    • A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system
    • Castro M.J., Macías J., and Parés C. A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Mod. Numer. Anal. 35 (2001) 107-127
    • (2001) Math. Mod. Numer. Anal. , vol.35 , pp. 107-127
    • Castro, M.J.1    Macías, J.2    Parés, C.3
  • 9
    • 37249062775 scopus 로고    scopus 로고
    • Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique
    • Castro M.J., Pardo A., and Parés C. Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Mod. Meth. Appl. Sci. 17 (2007) 2055-2113
    • (2007) Math. Mod. Meth. Appl. Sci. , vol.17 , pp. 2055-2113
    • Castro, M.J.1    Pardo, A.2    Parés, C.3
  • 10
    • 85189842230 scopus 로고    scopus 로고
    • M.J. Castro, A. Pardo, C. Parés, E.F. Toro, in preparation.
    • M.J. Castro, A. Pardo, C. Parés, E.F. Toro, in preparation.
  • 11
    • 85189842387 scopus 로고    scopus 로고
    • C. Chalons, F. Coquel, Numerical capture of shock solutions of nonconservative hyperbolic systems via kinetic functions. Analysis and simulation of fluid dynamics, Adv. Math. Fluid Mech., Birkhäuser, Bäsel, 2007, pp. 45-68.
    • C. Chalons, F. Coquel, Numerical capture of shock solutions of nonconservative hyperbolic systems via kinetic functions. Analysis and simulation of fluid dynamics, Adv. Math. Fluid Mech., Birkhäuser, Bäsel, 2007, pp. 45-68.
  • 12
    • 0001522672 scopus 로고
    • Definition and weak stability of nonconservative products
    • Dal Maso G., LeFloch P.G., and Murat F. Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548
    • (1995) J. Math. Pures Appl. , vol.74 , pp. 483-548
    • Dal Maso, G.1    LeFloch, P.G.2    Murat, F.3
  • 13
    • 0031508127 scopus 로고    scopus 로고
    • Nonclassical shocks and kinetic relations: scalar conservation laws
    • Hayes B.T., and LeFloch P.G. Nonclassical shocks and kinetic relations: scalar conservation laws. Arch. Rational Mech. Anal. 139 (1997) 1-56
    • (1997) Arch. Rational Mech. Anal. , vol.139 , pp. 1-56
    • Hayes, B.T.1    LeFloch, P.G.2
  • 14
    • 0001203812 scopus 로고    scopus 로고
    • Nonclassical shocks and kinetic relations: finite difference schemes
    • Hayes B.T., and LeFloch P.G. Nonclassical shocks and kinetic relations: finite difference schemes. SIAM J. Numer. Anal. 35 (1998) 2169-2194
    • (1998) SIAM J. Numer. Anal. , vol.35 , pp. 2169-2194
    • Hayes, B.T.1    LeFloch, P.G.2
  • 15
    • 84968497746 scopus 로고
    • Why nonconservative schemes converge to wrong solutions: error analysis
    • Hou T.Y., and LeFloch P.G. Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62 (1994) 497-530
    • (1994) Math. Comput. , vol.62 , pp. 497-530
    • Hou, T.Y.1    LeFloch, P.G.2
  • 17
    • 84946281240 scopus 로고
    • Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form
    • LeFloch P.G. Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differen. Equat. 13 (1988) 669-727
    • (1988) Comm. Partial Differen. Equat. , vol.13 , pp. 669-727
    • LeFloch, P.G.1
  • 18
    • 85189841078 scopus 로고    scopus 로고
    • P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Mathematics and its Application, Minneapolis, Preprint # 593, 1989.
    • P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Mathematics and its Application, Minneapolis, Preprint # 593, 1989.
  • 19
    • 85189837070 scopus 로고    scopus 로고
    • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in conservative form, in: J. Ballmann, R. Jeltsch (Eds.), Proceedings of the International Conference on Hyperbolic problems, Note on Num. Fluid Mech., vol. 24, Viewieg, Braunschweig, 1989, pp. 362-373.
    • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in conservative form, in: J. Ballmann, R. Jeltsch (Eds.), Proceedings of the International Conference on Hyperbolic problems, Note on Num. Fluid Mech., vol. 24, Viewieg, Braunschweig, 1989, pp. 362-373.
  • 20
    • 85189836185 scopus 로고    scopus 로고
    • P.G. LeFloch, On some nonlinear hyperbolic problems (in English), Habilitation à Diriger des Recherches, Université de Paris, vol. 6, 1990.
    • P.G. LeFloch, On some nonlinear hyperbolic problems (in English), Habilitation à Diriger des Recherches, Université de Paris, vol. 6, 1990.
  • 21
    • 85189836280 scopus 로고    scopus 로고
    • P.G. LeFloch, Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002.
    • P.G. LeFloch, Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002.
  • 22
    • 21344434180 scopus 로고    scopus 로고
    • Graph solutions of nonlinear hyperbolic systems
    • LeFloch P.G. Graph solutions of nonlinear hyperbolic systems. J. Hyper. Differen. Equat. 1 (2004) 643-689
    • (2004) J. Hyper. Differen. Equat. , vol.1 , pp. 643-689
    • LeFloch, P.G.1
  • 23
    • 0001370693 scopus 로고
    • Existence theory for nonlinear hyperbolic systems in nonconservative form
    • LeFloch P.G., and Liu T.-P. Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5 (1993) 261-280
    • (1993) Forum Math. , vol.5 , pp. 261-280
    • LeFloch, P.G.1    Liu, T.-P.2
  • 24
    • 40249111458 scopus 로고    scopus 로고
    • Why many shock wave theories are necessary. Fourth-order models, kinetic functions, and equivalent equations
    • LeFloch P.G., and Mohamadian M. Why many shock wave theories are necessary. Fourth-order models, kinetic functions, and equivalent equations. J. Comput. Phys. 227 (2008) 4162-4189
    • (2008) J. Comput. Phys. , vol.227 , pp. 4162-4189
    • LeFloch, P.G.1    Mohamadian, M.2
  • 25
    • 5744243501 scopus 로고    scopus 로고
    • The Riemann problem for fluid flows in a nozzle with discontinuous cross-section
    • LeFloch P.G., and Thanh M.D. The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci. 1 (2003) 763-796
    • (2003) Comm. Math. Sci. , vol.1 , pp. 763-796
    • LeFloch, P.G.1    Thanh, M.D.2
  • 26
    • 39049136555 scopus 로고    scopus 로고
    • The Riemann problem for the shallow water equations with discontinuous topography
    • LeFloch P.G., and Thanh M.D. The Riemann problem for the shallow water equations with discontinuous topography. Comm. Math. Sci. 5 (2007) 865-885
    • (2007) Comm. Math. Sci. , vol.5 , pp. 865-885
    • LeFloch, P.G.1    Thanh, M.D.2
  • 27
    • 34547399608 scopus 로고    scopus 로고
    • Godunov method for nonconservative hyperbolic systems
    • Muñoz-Ruiz M.L., and Parés C. Godunov method for nonconservative hyperbolic systems. Math. Method. Anal. Numer. 41 (2007) 169-185
    • (2007) Math. Method. Anal. Numer. , vol.41 , pp. 169-185
    • Muñoz-Ruiz, M.L.1    Parés, C.2
  • 28
    • 34548429147 scopus 로고    scopus 로고
    • High-order well-balanced finite volume WENO schemes for shallow water equation with moving water
    • Noelle S., Xing Y., and Shu C.W. High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226 (2007) 29-58
    • (2007) J. Comput. Phys. , vol.226 , pp. 29-58
    • Noelle, S.1    Xing, Y.2    Shu, C.W.3
  • 29
    • 33847668045 scopus 로고    scopus 로고
    • Numerical methods for nonconservative hyperbolic systems: a theoretical framework
    • Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300-321
    • (2006) SIAM J. Numer. Anal. , vol.44 , pp. 300-321
    • Parés, C.1
  • 30
    • 10044294949 scopus 로고    scopus 로고
    • On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems
    • Parés C., and Castro M.J. On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. Math. Model. Numer. Anal. 38 (2004) 821-852
    • (2004) Math. Model. Numer. Anal. , vol.38 , pp. 821-852
    • Parés, C.1    Castro, M.J.2
  • 31
    • 85189838913 scopus 로고    scopus 로고
    • J.B. Schijf, J.C. Schonfeld, Theoretical considerations on the motion of salt and fresh water, in: Proceedings of the Minn. Int. Hydraulics Conv., Joint Meeting IAHR Hydro. Div. ASCE. (September 1953) 1953, pp. 321-333.
    • J.B. Schijf, J.C. Schonfeld, Theoretical considerations on the motion of salt and fresh water, in: Proceedings of the Minn. Int. Hydraulics Conv., Joint Meeting IAHR Hydro. Div. ASCE. (September 1953) 1953, pp. 321-333.
  • 32
    • 33644933296 scopus 로고    scopus 로고
    • High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms
    • Xing Y., and Shu C.-W. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214 (2006) 567-598
    • (2006) J. Comput. Phys. , vol.214 , pp. 567-598
    • Xing, Y.1    Shu, C.-W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.