메뉴 건너뛰기




Volumn 41, Issue 1, 2007, Pages 169-185

Godunov method for nonconservative hyperbolic systems

Author keywords

Approximate Riemann solvers; Godunov method; Nonconservative hyperbolic systems; Well balancing

Indexed keywords


EID: 34547399608     PISSN: 0764583X     EISSN: 12903841     Source Type: Journal    
DOI: 10.1051/m2an:2007011     Document Type: Article
Times cited : (65)

References (22)
  • 3
    • 0035631410 scopus 로고    scopus 로고
    • A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system
    • M.J. Castro, J. Macias and C Parés, A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Mod. Num. Anal. 35 (2001) 107-127.
    • (2001) Math. Mod. Num. Anal , vol.35 , pp. 107-127
    • Castro, M.J.1    Macias, J.2    Parés, C.3
  • 4
    • 34547412609 scopus 로고    scopus 로고
    • F. Coquel, D. Diehl, C. Merkle and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, in Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lectures in Mathematics and Theoretical Physics, Proceedings of CEMRACS 2003.
    • F. Coquel, D. Diehl, C. Merkle and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, in Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lectures in Mathematics and Theoretical Physics, Proceedings of CEMRACS 2003.
  • 5
    • 0001522672 scopus 로고
    • Definition and weak stability of nonconservative products
    • G. Dal Maso, P.G. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548.
    • (1995) J. Math. Pures Appl , vol.74 , pp. 483-548
    • Dal Maso, G.1    LeFloch, P.G.2    Murat, F.3
  • 8
    • 0034209981 scopus 로고    scopus 로고
    • A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms
    • L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135-159.
    • (2000) Comput. Math. Appl , vol.39 , pp. 135-159
    • Gosse, L.1
  • 9
    • 0035590547 scopus 로고    scopus 로고
    • A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms
    • L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365.
    • (2001) Math. Models Methods Appl. Sci , vol.11 , pp. 339-365
    • Gosse, L.1
  • 10
    • 1542576141 scopus 로고    scopus 로고
    • A well balanced scheme for the numerical processing of source terms in hyperbolic equations
    • J.M. Greenberg and A.Y. LeRoux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16.
    • (1996) SIAM J. Numer. Anal , vol.33 , pp. 1-16
    • Greenberg, J.M.1    LeRoux, A.Y.2
  • 11
  • 12
    • 0000876320 scopus 로고
    • On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
    • A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61.
    • (1983) SIAM Rev , vol.25 , pp. 35-61
    • Harten, A.1    Lax, P.D.2    Van Leer, B.3
  • 13
    • 84968497746 scopus 로고
    • Why nonconservative schemes converge to wrong solutions: Error analysis
    • T. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comp. 62 (1994) 497-530.
    • (1994) Math. Comp , vol.62 , pp. 497-530
    • Hou, T.1    LeFloch, P.G.2
  • 14
    • 0029323645 scopus 로고
    • Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law
    • E. Isaacson and B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640.
    • (1995) SIAM J. Appl. Math , vol.55 , pp. 625-640
    • Isaacson, E.1    Temple, B.2
  • 15
  • 16
    • 34547161166 scopus 로고
    • Shock waves for nonlinear hyperbolic systems in nonconservative form
    • Minneapolis, Preprint 593
    • P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute Math. Appl. Minneapolis, Preprint 593 (1989).
    • (1989) Institute Math. Appl
    • LeFloch, P.G.1
  • 17
    • 21344434180 scopus 로고    scopus 로고
    • Graph solutions of nonlinear hyperbolic systems
    • P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyper. Differ. Equa. 2 (2004) 643-689.
    • (2004) J. Hyper. Differ. Equa , vol.2 , pp. 643-689
    • LeFloch, P.G.1
  • 18
    • 0033482178 scopus 로고    scopus 로고
    • Representation of weak limits and definition of nonconservative products
    • P.G. LeFloch and A.E. Tzavaras, Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30 (1999) 1309-1342.
    • (1999) SIAM J. Math. Anal , vol.30 , pp. 1309-1342
    • LeFloch, P.G.1    Tzavaras, A.E.2
  • 19
    • 0001315315 scopus 로고    scopus 로고
    • Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm
    • R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Phys. 146 (1998) 346-365.
    • (1998) J. Comp. Phys , vol.146 , pp. 346-365
    • LeVeque, R.J.1
  • 20
    • 33847668045 scopus 로고    scopus 로고
    • Numerical methods for nonconservative hyperbolic systems: A theoretical framework
    • C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300-321.
    • (2006) SIAM J. Numer. Anal , vol.44 , pp. 300-321
    • Parés, C.1
  • 21
    • 10044294949 scopus 로고    scopus 로고
    • On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems
    • C. Parés and M. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems. Math. Mod. Num. Anal. 38 (2004) 821-852.
    • (2004) Math. Mod. Num. Anal , vol.38 , pp. 821-852
    • Parés, C.1    Castro, M.2
  • 22
    • 0001168879 scopus 로고
    • The space BV and quasilinear equations
    • A.I. Volpert, The space BV and quasilinear equations. Math. USSR Sbornik 73 (1967) 225-267.
    • (1967) Math. USSR Sbornik , vol.73 , pp. 225-267
    • Volpert, A.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.