-
3
-
-
0035631410
-
A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system
-
M.J. Castro, J. Macias and C Parés, A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Mod. Num. Anal. 35 (2001) 107-127.
-
(2001)
Math. Mod. Num. Anal
, vol.35
, pp. 107-127
-
-
Castro, M.J.1
Macias, J.2
Parés, C.3
-
4
-
-
34547412609
-
-
F. Coquel, D. Diehl, C. Merkle and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, in Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lectures in Mathematics and Theoretical Physics, Proceedings of CEMRACS 2003.
-
F. Coquel, D. Diehl, C. Merkle and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, in Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lectures in Mathematics and Theoretical Physics, Proceedings of CEMRACS 2003.
-
-
-
-
5
-
-
0001522672
-
Definition and weak stability of nonconservative products
-
G. Dal Maso, P.G. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548.
-
(1995)
J. Math. Pures Appl
, vol.74
, pp. 483-548
-
-
Dal Maso, G.1
LeFloch, P.G.2
Murat, F.3
-
8
-
-
0034209981
-
A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms
-
L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135-159.
-
(2000)
Comput. Math. Appl
, vol.39
, pp. 135-159
-
-
Gosse, L.1
-
9
-
-
0035590547
-
A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms
-
L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365.
-
(2001)
Math. Models Methods Appl. Sci
, vol.11
, pp. 339-365
-
-
Gosse, L.1
-
10
-
-
1542576141
-
A well balanced scheme for the numerical processing of source terms in hyperbolic equations
-
J.M. Greenberg and A.Y. LeRoux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16.
-
(1996)
SIAM J. Numer. Anal
, vol.33
, pp. 1-16
-
-
Greenberg, J.M.1
LeRoux, A.Y.2
-
12
-
-
0000876320
-
On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
-
A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61.
-
(1983)
SIAM Rev
, vol.25
, pp. 35-61
-
-
Harten, A.1
Lax, P.D.2
Van Leer, B.3
-
13
-
-
84968497746
-
Why nonconservative schemes converge to wrong solutions: Error analysis
-
T. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comp. 62 (1994) 497-530.
-
(1994)
Math. Comp
, vol.62
, pp. 497-530
-
-
Hou, T.1
LeFloch, P.G.2
-
14
-
-
0029323645
-
Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law
-
E. Isaacson and B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640.
-
(1995)
SIAM J. Appl. Math
, vol.55
, pp. 625-640
-
-
Isaacson, E.1
Temple, B.2
-
16
-
-
34547161166
-
Shock waves for nonlinear hyperbolic systems in nonconservative form
-
Minneapolis, Preprint 593
-
P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute Math. Appl. Minneapolis, Preprint 593 (1989).
-
(1989)
Institute Math. Appl
-
-
LeFloch, P.G.1
-
17
-
-
21344434180
-
Graph solutions of nonlinear hyperbolic systems
-
P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyper. Differ. Equa. 2 (2004) 643-689.
-
(2004)
J. Hyper. Differ. Equa
, vol.2
, pp. 643-689
-
-
LeFloch, P.G.1
-
18
-
-
0033482178
-
Representation of weak limits and definition of nonconservative products
-
P.G. LeFloch and A.E. Tzavaras, Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30 (1999) 1309-1342.
-
(1999)
SIAM J. Math. Anal
, vol.30
, pp. 1309-1342
-
-
LeFloch, P.G.1
Tzavaras, A.E.2
-
19
-
-
0001315315
-
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm
-
R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Phys. 146 (1998) 346-365.
-
(1998)
J. Comp. Phys
, vol.146
, pp. 346-365
-
-
LeVeque, R.J.1
-
20
-
-
33847668045
-
Numerical methods for nonconservative hyperbolic systems: A theoretical framework
-
C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300-321.
-
(2006)
SIAM J. Numer. Anal
, vol.44
, pp. 300-321
-
-
Parés, C.1
-
21
-
-
10044294949
-
On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems
-
C. Parés and M. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems. Math. Mod. Num. Anal. 38 (2004) 821-852.
-
(2004)
Math. Mod. Num. Anal
, vol.38
, pp. 821-852
-
-
Parés, C.1
Castro, M.2
-
22
-
-
0001168879
-
The space BV and quasilinear equations
-
A.I. Volpert, The space BV and quasilinear equations. Math. USSR Sbornik 73 (1967) 225-267.
-
(1967)
Math. USSR Sbornik
, vol.73
, pp. 225-267
-
-
Volpert, A.I.1
|