메뉴 건너뛰기




Volumn 227, Issue 8, 2008, Pages 4162-4189

Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models

Author keywords

Camassa Holm; Capillarity; Conservation law; Equivalent equation; Hyperbolic equation; Kinetic relation; Shock wave; Thin liquid film; Viscosity

Indexed keywords

CAPILLARITY; FINITE DIFFERENCE METHOD; HYPERBOLIC FUNCTIONS; KINETICS; LIQUID FILMS; NONLINEAR EQUATIONS; VAN DER WAALS FORCES; VISCOSITY;

EID: 40249111458     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2007.12.026     Document Type: Article
Times cited : (30)

References (34)
  • 1
    • 0008894832 scopus 로고
    • Kinetic relations and the propagation of phase boundaries in solids
    • R. Abeyaratne J.K. Knowles Kinetic relations and the propagation of phase boundaries in solids Arch. Ration. Mech. Anal. 114 1991 119 154
    • (1991) Arch. Ration. Mech. Anal. , vol.114 , pp. 119-154
    • Abeyaratne, R.1    Knowles, J.K.2
  • 2
    • 0026237436 scopus 로고
    • Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids
    • R. Abeyaratne J.K. Knowles Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids SIAM J. Appl. Math. 51 1991 1205 1221
    • (1991) SIAM J. Appl. Math. , vol.51 , pp. 1205-1221
    • Abeyaratne, R.1    Knowles, J.K.2
  • 4
    • 85190076452 scopus 로고    scopus 로고
    • On the validity of the Chapman–Enskog expansion for shock waves with small strength
    • N. Bedjaoui C. Klingenberg P.G. LeFloch On the validity of the Chapman–Enskog expansion for shock waves with small strength Portugal. Math. 61 2004 479 499
    • (2004) Portugal. Math. , vol.61 , pp. 479-499
    • Bedjaoui, N.1    Klingenberg, C.2    LeFloch, P.G.3
  • 5
    • 10044220725 scopus 로고    scopus 로고
    • Diffusive–dispersive traveling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion
    • N. Bedjaoui P.G. LeFloch Diffusive–dispersive traveling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion Proc. Roy. Soc. Edinb. A 134 2004 815 843
    • (2004) Proc. Roy. Soc. Edinb. A , vol.134 , pp. 815-843
    • Bedjaoui, N.1    LeFloch, P.G.2
  • 6
    • 0038919593 scopus 로고    scopus 로고
    • Undercompressive shocks in thin film flows
    • A.L. Bertozzi A. Münch M. Shearer Undercompressive shocks in thin film flows Phys. D 134 1999 431 464
    • (1999) Phys. D , vol.134 , pp. 431-464
    • Bertozzi, A.L.1    Münch, A.2    Shearer, M.3
  • 7
    • 0034353687 scopus 로고    scopus 로고
    • Existence of under-compressive traveling waves in thin film equations
    • A.L. Bertozzi M. Shearer Existence of under-compressive traveling waves in thin film equations SIAM J. Math. Anal. 32 2000 194 213
    • (2000) SIAM J. Math. Anal. , vol.32 , pp. 194-213
    • Bertozzi, A.L.1    Shearer, M.2
  • 8
    • 0002031820 scopus 로고    scopus 로고
    • High-order entropy conservative schemes and kinetic relations for van der Waals fluids
    • C. Chalons P.G. LeFloch High-order entropy conservative schemes and kinetic relations for van der Waals fluids J. Comput. Phys. 167 2001 1 23
    • (2001) J. Comput. Phys. , vol.167 , pp. 1-23
    • Chalons, C.1    LeFloch, P.G.2
  • 9
    • 85016350873 scopus 로고    scopus 로고
    • Computing under-compressive waves with the random choice scheme. Non-classical shock waves
    • C. Chalons P.G. LeFloch Computing under-compressive waves with the random choice scheme. Non-classical shock waves Interf. Free Bound 5 2003 129 158
    • (2003) Interf. Free Bound , vol.5 , pp. 129-158
    • Chalons, C.1    LeFloch, P.G.2
  • 10
    • 2442646837 scopus 로고    scopus 로고
    • Sonic and kinetic phase transitions with applications to Chapman–Jouguet deflagration
    • R.M. Colombo A. Corli Sonic and kinetic phase transitions with applications to Chapman–Jouguet deflagration Math. Methods Appl. Sci. 27 2004 843 864
    • (2004) Math. Methods Appl. Sci. , vol.27 , pp. 843-864
    • Colombo, R.M.1    Corli, A.2
  • 11
    • 19944370503 scopus 로고    scopus 로고
    • The Riemann problem for reversible reactive flows with metastability
    • A. Corli H.T. Fan The Riemann problem for reversible reactive flows with metastability SIAM J. Appl. Math. 65 2004 426 457
    • (2004) SIAM J. Appl. Math. , vol.65 , pp. 426-457
    • Corli, A.1    Fan, H.T.2
  • 12
    • 40249107710 scopus 로고    scopus 로고
    • wave propagation and stability in conservation laws with slow diffusion and fast reaction
    • H.T. Fan H.-L. Liu Pattern formation wave propagation and stability in conservation laws with slow diffusion and fast reaction J. Hyperbolic Differ. Equ. 1 2004 605 636
    • (2004) J. Hyperbolic Differ. Equ. , vol.1 , pp. 605-636
    • Fan, H.T.1    Liu, H.-L.2    formation, Pattern3
  • 13
    • 85190078199 scopus 로고    scopus 로고
    • H.-T. Fan, M. Slemrod, The Riemann problem for systems of conservation laws of mixed type, in: J.E. Dunn et al. (Eds.), Shock Induced Transitions and Phase Structures in General Media, Workshop held in Minneapolis (USA), October 1990, IMA Vol. Math. Appl., vol. 52, 1993, pp. 61–91.
  • 14
    • 0031508127 scopus 로고    scopus 로고
    • Nonclassical shocks and kinetic relations. Scalar conservation laws
    • B.T. Hayes P.G. LeFloch Nonclassical shocks and kinetic relations. Scalar conservation laws Arch. Ration. Mech. Anal. 139 1997 1 56
    • (1997) Arch. Ration. Mech. Anal. , vol.139 , pp. 1-56
    • Hayes, B.T.1    LeFloch, P.G.2
  • 15
    • 0001203812 scopus 로고    scopus 로고
    • Nonclassical shocks and kinetic relations. Finite difference schemes
    • B.T. Hayes P.G. LeFloch Nonclassical shocks and kinetic relations. Finite difference schemes SIAM J. Numer. Anal. 35 1998 2169 2194
    • (1998) SIAM J. Numer. Anal. , vol.35 , pp. 2169-2194
    • Hayes, B.T.1    LeFloch, P.G.2
  • 16
    • 0034345304 scopus 로고    scopus 로고
    • Nonclassical shock waves and kinetic relations. Strictly hyperbolic systems
    • B.T. Hayes P.G. LeFloch Nonclassical shock waves and kinetic relations. Strictly hyperbolic systems SIAM J. Math. Anal. 31 2000 941 991
    • (2000) SIAM J. Math. Anal. , vol.31 , pp. 941-991
    • Hayes, B.T.1    LeFloch, P.G.2
  • 17
    • 84968497746 scopus 로고
    • Why nonconservative schemes converge to wrong solutions: error analysis
    • T.Y. Hou P.G. LeFloch Why nonconservative schemes converge to wrong solutions: error analysis Math. Comput. 62 1994 497 530
    • (1994) Math. Comput. , vol.62 , pp. 497-530
    • Hou, T.Y.1    LeFloch, P.G.2
  • 18
    • 0000261039 scopus 로고
    • Traveling wave solutions of the modified Korteweg–deVries Burgers equation
    • D. Jacobs W.R. McKinney M. Shearer Traveling wave solutions of the modified Korteweg–deVries Burgers equation J. Differ. Equ. 116 1995 448 467
    • (1995) J. Differ. Equ. , vol.116 , pp. 448-467
    • Jacobs, D.1    McKinney, W.R.2    Shearer, M.3
  • 19
    • 21144471185 scopus 로고
    • Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme
    • P.G. LeFloch Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme Arch. Ration. Mech. Anal. 123 1993 153 197
    • (1993) Arch. Ration. Mech. Anal. , vol.123 , pp. 153-197
    • LeFloch, P.G.1
  • 20
    • 85190073066 scopus 로고    scopus 로고
    • P.G. LeFloch, Hyperbolic systems of conservation laws: the theory of classical and non-classical shock waves, Lectures in Mathematics, ETH Zürich, Birkäuser, 2002.
  • 21
    • 21344434180 scopus 로고    scopus 로고
    • Graph solutions of nonlinear hyperbolic systems
    • P.G. LeFloch Graph solutions of nonlinear hyperbolic systems J. Hyperbolic Differ. Equ. 1 2004 643 690
    • (2004) J. Hyperbolic Differ. Equ. , vol.1 , pp. 643-690
    • LeFloch, P.G.1
  • 22
    • 0000339031 scopus 로고    scopus 로고
    • High-order schemes, entropy inequalities, and non-classical shocks
    • P.G. LeFloch C. Rohde High-order schemes, entropy inequalities, and non-classical shocks SIAM J. Numer. Anal. 37 2000 2023 2060
    • (2000) SIAM J. Numer. Anal. , vol.37 , pp. 2023-2060
    • LeFloch, P.G.1    Rohde, C.2
  • 23
    • 10044240404 scopus 로고    scopus 로고
    • Nonclassical Riemann solvers with nucleation
    • P.G. LeFloch M. Shearer Nonclassical Riemann solvers with nucleation Proc. Roy. Soc. Edinb. A 134 2004 941 964
    • (2004) Proc. Roy. Soc. Edinb. A , vol.134 , pp. 941-964
    • LeFloch, P.G.1    Shearer, M.2
  • 24
    • 20444435595 scopus 로고    scopus 로고
    • Comparison of dynamic contact line models for driven thin liquid films
    • R. Levy M. Shearer Comparison of dynamic contact line models for driven thin liquid films Eur. J. Appl. Math. 15 2004 625 642
    • (2004) Eur. J. Appl. Math. , vol.15 , pp. 625-642
    • Levy, R.1    Shearer, M.2
  • 25
    • 0034178761 scopus 로고    scopus 로고
    • Shock transitions in Marangoni gravity driven thin film flow
    • A. Münch Shock transitions in Marangoni gravity driven thin film flow Nonlinearity 13 2000 731 746
    • (2000) Nonlinearity , vol.13 , pp. 731-746
    • Münch, A.1
  • 26
    • 0036604910 scopus 로고    scopus 로고
    • Thermo-elastic aspects of dynamic nucleation
    • S.-C. Ngan L. Truskinovsky Thermo-elastic aspects of dynamic nucleation J. Mech. Phys. Solids 50 2002 1193 1229
    • (2002) J. Mech. Phys. Solids , vol.50 , pp. 1193-1229
    • Ngan, S.-C.1    Truskinovsky, L.2
  • 27
    • 40249098775 scopus 로고    scopus 로고
    • Convergence of thin film approximation for a scalar conservation law
    • F. Otto M. Westdickenberg Convergence of thin film approximation for a scalar conservation law J. Hyperbolic Differ. Equ. 2 2005 183 200
    • (2005) J. Hyperbolic Differ. Equ. , vol.2 , pp. 183-200
    • Otto, F.1    Westdickenberg, M.2
  • 28
    • 0000993611 scopus 로고    scopus 로고
    • Undercompressive shocks for a system of hyperbolic conservation laws with cubic nonlinearity
    • S. Schulze M. Shearer Undercompressive shocks for a system of hyperbolic conservation laws with cubic nonlinearity J. Math. Anal. Appl. 229 1999 344 362
    • (1999) J. Math. Anal. Appl. , vol.229 , pp. 344-362
    • Schulze, S.1    Shearer, M.2
  • 29
    • 0020500507 scopus 로고
    • Admissibility criteria for propagating phase boundaries in a van der Waals fluid
    • M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid Arch. Ration. Mech. Anal. 81 1983 301 315
    • (1983) Arch. Ration. Mech. Anal. , vol.81 , pp. 301-315
    • Slemrod, M.1
  • 30
    • 0000697848 scopus 로고
    • A limiting viscosity approach to the Riemann problem for materials exhibiting change of phase
    • M. Slemrod A limiting viscosity approach to the Riemann problem for materials exhibiting change of phase Arch. Ration. Mech. Anal. 105 1989 327 365
    • (1989) Arch. Ration. Mech. Anal. , vol.105 , pp. 327-365
    • Slemrod, M.1
  • 31
    • 2442677705 scopus 로고
    • Dynamics of non-equilibrium phase boundaries in a heat conducting nonlinear elastic medium
    • L. Truskinovsky Dynamics of non-equilibrium phase boundaries in a heat conducting nonlinear elastic medium J. Appl. Math. Mech. (PMM) 51 1987 777 784
    • (1987) J. Appl. Math. Mech. (PMM) , vol.51 , pp. 777-784
    • Truskinovsky, L.1
  • 32
    • 0001430303 scopus 로고
    • Kinks versus shocks
    • L. Truskinovsky Kinks versus shocks R. Fosdick E. Dunn M. Slemrod Shock Induced Transitions and Phase Structures in General Media IMA Vol. Math. Appl. vol. 52 1993 Springer-Verlag New York 185 229
    • (1993) , pp. 185-229
    • Truskinovsky, L.1
  • 33
    • 0033294722 scopus 로고    scopus 로고
    • Cheap error estimation for Runge–Kutta methods
    • C. Tsitouras S.N. Papakostas Cheap error estimation for Runge–Kutta methods SIAM J. Sci. Comput. 20 1999 2067 2088
    • (1999) SIAM J. Sci. Comput. , vol.20 , pp. 2067-2088
    • Tsitouras, C.1    Papakostas, S.N.2
  • 34
    • 0035400408 scopus 로고    scopus 로고
    • Optimized explicit Runge–Kutta pair of order 9
    • C. Tsitouras Optimized explicit Runge–Kutta pair of order 9 Appl. Numer. Math. 38 2001 123 134
    • (2001) Appl. Numer. Math. , vol.38 , pp. 123-134
    • Tsitouras, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.