-
4
-
-
6444225001
-
-
J. R. Winkler, A. Di Bilio, N. A. Farrow, J. H. Richards, H. B. Gray, Pure Appl. Chem. 71, 1753 (1999).
-
(1999)
Pure Appl. Chem
, vol.71
, pp. 1753
-
-
Winkler, J.R.1
Di Bilio, A.2
Farrow, N.A.3
Richards, J.H.4
Gray, H.B.5
-
5
-
-
14844351561
-
-
S. S. Skourtis, I. Balabin, T. Kawatsu, D. N. Beratan, Proc. Natl. Acad. Sci. U.S.A. 102, 3552 (2005).
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 3552
-
-
Skourtis, S.S.1
Balabin, I.2
Kawatsu, T.3
Beratan, D.N.4
-
10
-
-
0033523919
-
-
C. C. Page, C. C. Moser, X. Chen, P. L. Dutton, Nature 402, 47 (1999).
-
(1999)
Nature
, vol.402
, pp. 47
-
-
Page, C.C.1
Moser, C.C.2
Chen, X.3
Dutton, P.L.4
-
11
-
-
0035965739
-
-
B. R. Crane, A. J. Di Bilio, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 123, 11623 (2001).
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 11623
-
-
Crane, B.R.1
Di Bilio, A.J.2
Winkler, J.R.3
Gray, H.B.4
-
12
-
-
0029650832
-
-
R. Langen et al., Science 268, 1733 (1995).
-
(1995)
Science
, vol.268
, pp. 1733
-
-
Langen, R.1
-
13
-
-
0032507003
-
-
L. K. Skov, T. Pascher, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 120, 1102 (1998).
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 1102
-
-
Skov, L.K.1
Pascher, T.2
Winkler, J.R.3
Gray, H.B.4
-
15
-
-
0038208381
-
-
J. Stubbe, D. G. Nocera, C. S. Yee, M. C. Y. Chang, Chem. Rev. 103, 2167 (2003).
-
(2003)
Chem. Rev
, vol.103
, pp. 2167
-
-
Stubbe, J.1
Nocera, D.G.2
Yee, C.S.3
Chang, M.C.Y.4
-
16
-
-
11244327791
-
-
M. C. Y. Chang, C. S. Yee, D. G. Nocera, J. Stubbe, J. Am. Chem. Soc. 126, 16702 (2004).
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 16702
-
-
Chang, M.C.Y.1
Yee, C.S.2
Nocera, D.G.3
Stubbe, J.4
-
17
-
-
0034214080
-
-
C. Aubert, M. H. Vos, P. Mathis, A. P. M. Eker, K. Brettel, Nature 405, 586 (2000).
-
(2000)
Nature
, vol.405
, pp. 586
-
-
Aubert, C.1
Vos, M.H.2
Mathis, P.3
Eker, A.P.M.4
Brettel, K.5
-
21
-
-
0037714218
-
-
Y. A. Berlin, G. R. Hutchison, P. Rempala, M. A. Ratner, J. Michl, J. Phys. Chem. A 107, 3970 (2003).
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 3970
-
-
Berlin, Y.A.1
Hutchison, G.R.2
Rempala, P.3
Ratner, M.A.4
Michl, J.5
-
22
-
-
46449083949
-
-
Materials and methods are available as supporting material on Science Online.
-
Materials and methods are available as supporting material on Science Online.
-
-
-
-
23
-
-
46449124670
-
-
124H).
-
124H).
-
-
-
-
24
-
-
46449117232
-
-
Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
-
Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
-
-
-
-
25
-
-
0041161880
-
-
W. B. Connick, A. J. Di Bilio, M. G. Hill, J. R. Winkler, H. B. Gray, Inorg. Chim. Acta 240, 169 (1995).
-
(1995)
Inorg. Chim. Acta
, vol.240
, pp. 169
-
-
Connick, W.B.1
Di Bilio, A.J.2
Hill, M.G.3
Winkler, J.R.4
Gray, H.B.5
-
28
-
-
46449135848
-
-
A. Cannizzo et al., J. Am. Chem. Soc. 130, in press (2008).
-
A. Cannizzo et al., J. Am. Chem. Soc. 130, in press (2008).
-
-
-
-
29
-
-
46449100524
-
-
Although endergonic initial steps can still produce an advantage over single-step tunneling, transport time constants increase by roughly one order of magnitude for each 100 meV increase in -ΔG° Int→z.ast;ML, Hence, tunneling through less stable intermediates, although possible, offers neither a kinetic nor an energetic advantage over a reaction involving exergonic tunneling steps
-
Although endergonic initial steps can still produce an advantage over single-step tunneling, transport time constants increase by roughly one order of magnitude for each 100 meV increase in -ΔG° (Int→z.ast;ML). Hence, tunneling through less stable intermediates, although possible, offers neither a kinetic nor an energetic advantage over a reaction involving exergonic tunneling steps.
-
-
-
-
31
-
-
33751499364
-
-
S. Solar, N. Getoff, P. S. Surdhar, D. A. Armstrong, A. Singh, J. Phys. Chem. 95, 3639 (1991).
-
(1991)
J. Phys. Chem
, vol.95
, pp. 3639
-
-
Solar, S.1
Getoff, N.2
Surdhar, P.S.3
Armstrong, D.A.4
Singh, A.5
-
32
-
-
46449109576
-
-
On the basis of a large body of experimental data, we assume a reorganization energy of 0.8 eV for all ET steps (2, 3, Earlier work has established that the rates of individual tunneling reactions in azurin depend exponentially on the donor-acceptor separation distance, with a decay constant of 1.1 Å-1 (12, rates also depend on driving force [estimated from electrochemical measurements and from the observed *ReII(CO)3(dmp•, H 124, W122)|AzCuI: ReI(CO) 3(dmp•, H124, W122) •+|AzCuI equilibrium constant
-
I equilibrium constant].
-
-
-
-
33
-
-
1642331709
-
-
K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 303, 1831 (2004).
-
(2004)
Science
, vol.303
, pp. 1831
-
-
Ferreira, K.N.1
Iverson, T.M.2
Maghlaoui, K.3
Barber, J.4
Iwata, S.5
-
34
-
-
46449127897
-
-
We thank C. Grǎdinaru, B. Leigh, and J. Miller for assistance in the early stages of this work. Supported by NIH (DK19038 to H.B.G, NSF (CHE-0749997 to B.R.C, and CHE-0533150 to H.B.G. and J.R.W, the Foundation BLANCEFLOR Boncompagni-Ludovisi, née Bildt; STINT, the Swedish Foundation for International Cooperation in Research and Higher Education (MLAA, the Engineering and Physical Sciences Research Council; Queen Mary, University of London; and the Science and Technology Facilities Council (CMSD43, The coordinates of the ReI(CO)3 (dmp)(H124, W 122)|AzCuII crystal structure have been deposited in the Protein Data Bank accession number 2I7O
-
II crystal structure have been deposited in the Protein Data Bank (accession number 2I7O).
-
-
-
|