메뉴 건너뛰기




Volumn 23, Issue 5, 2008, Pages 528-532

Ex situ plasma diagnosis by recognition of X-ray photoelectron spectroscopy data using a neural network

Author keywords

Backpropgation neural network; Chemical states; Diagnosis; Ex situ; Fault; Identification; Model; Modular neural network; Monitoring; Plasma equipment; Prediction; Principal component analysis; Semiconductor; Thin film surface; Training factor

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; ELECTRIC FAULT CURRENTS; ELECTRON SPECTROSCOPY; FINANCIAL DATA PROCESSING; IMAGE CLASSIFICATION; MOLECULAR ORBITALS; MOLECULAR SPECTROSCOPY; NEURAL NETWORKS; PHOTOELECTRICITY; PHOTOELECTRON SPECTROSCOPY; PHOTOELECTRONS; PHOTOIONIZATION; PHOTONS; PLASMA DIAGNOSTICS; PLASMAS; PRINCIPAL COMPONENT ANALYSIS; SINGLE CRYSTAL SURFACES; SPECTRUM ANALYSIS;

EID: 46149116376     PISSN: 10426914     EISSN: 15322475     Source Type: Journal    
DOI: 10.1080/10426910802104310     Document Type: Article
Times cited : (4)

References (30)
  • 3
    • 0028748598 scopus 로고
    • Measurement of discharge impedance for dry etch process
    • Bose, F.; Patrick, R.; Baltes, H. Measurement of discharge impedance for dry etch process. SPIE 1994, 2336, 101-110.
    • (1994) SPIE , vol.2336 , pp. 101-110
    • Bose, F.1    Patrick, R.2    Baltes, H.3
  • 4
    • 4344679633 scopus 로고    scopus 로고
    • Neural network-based real-time malfunction diagnosis of reactive ion etching using in situ metrology data
    • Hong, S.J.; May, G.S. Neural network-based real-time malfunction diagnosis of reactive ion etching using in situ metrology data. IEEE Trans. Semicond. Manufac. 2004, 17, 408-421.
    • (2004) IEEE Trans. Semicond. Manufac , vol.17 , pp. 408-421
    • Hong, S.J.1    May, G.S.2
  • 5
    • 36248929346 scopus 로고    scopus 로고
    • Wavelet monitoring of spatial surface roughness for plasma diagnosis
    • Kim, B.; Kim, W.S. Wavelet monitoring of spatial surface roughness for plasma diagnosis. Microelectron. Eng. 2007, 84, 2810-2816.
    • (2007) Microelectron. Eng , vol.84 , pp. 2810-2816
    • Kim, B.1    Kim, W.S.2
  • 6
    • 33750174613 scopus 로고    scopus 로고
    • Prediction of surface roughness using X-ray photoelectron specroscopy and neural network
    • Kim, B.; Park, M.G. Prediction of surface roughness using X-ray photoelectron specroscopy and neural network. Appl. Spectros. 2006, 60, 1192-1197.
    • (2006) Appl. Spectros , vol.60 , pp. 1192-1197
    • Kim, B.1    Park, M.G.2
  • 8
    • 24644442229 scopus 로고    scopus 로고
    • Diagnosis of plasma processing equipment using neural network recognition of wavelet-filtered impedance matching
    • Kim, B.; Kim, S. Diagnosis of plasma processing equipment using neural network recognition of wavelet-filtered impedance matching. Microelectron. Eng. 2005, 82, 44-52.
    • (2005) Microelectron. Eng , vol.82 , pp. 44-52
    • Kim, B.1    Kim, S.2
  • 9
    • 0033078357 scopus 로고    scopus 로고
    • Production data based optimal etch time control design for a reactive ion etching process
    • Limanond, S.; Si, J.; Tseng, Y.L. Production data based optimal etch time control design for a reactive ion etching process. IEEE Trans. Semicond. Manufact. 1999, 12, 139-147.
    • (1999) IEEE Trans. Semicond. Manufact , vol.12 , pp. 139-147
    • Limanond, S.1    Si, J.2    Tseng, Y.L.3
  • 11
    • 33646725309 scopus 로고    scopus 로고
    • A processing quality prognostic scheme for plasma sputtering in TFT-LCD manufacturing
    • Su, Y.C.; Hung, M.H.; Cheng, F.T. A processing quality prognostic scheme for plasma sputtering in TFT-LCD manufacturing. IEEE Trans. Semicond. Manufact. 2006, 19, 183-194.
    • (2006) IEEE Trans. Semicond. Manufact , vol.19 , pp. 183-194
    • Su, Y.C.1    Hung, M.H.2    Cheng, F.T.3
  • 12
    • 24944483666 scopus 로고    scopus 로고
    • Fault detection for plasma etching process using RBF neural networks
    • Chang, Y.J. Fault detection for plasma etching process using RBF neural networks. Lecture Notes in Computer Science. 2005, 3498, 538-543.
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 538-543
    • Chang, Y.J.1
  • 13
    • 31144453377 scopus 로고    scopus 로고
    • Plasma control using neural network and optical emission spectroscopy
    • Kim, B.; Bae, J.; Hong, W.S. Plasma control using neural network and optical emission spectroscopy. J. Vac. Sci. Technol. 2005, A23, 355-358.
    • (2005) J. Vac. Sci. Technol , vol.A23 , pp. 355-358
    • Kim, B.1    Bae, J.2    Hong, W.S.3
  • 14
    • 0344896839 scopus 로고    scopus 로고
    • Neural network modeling of reactive ion etching using optical emission spectroscopy data
    • Hong, S.J.; May, G.S.; Park, D.C. Neural network modeling of reactive ion etching using optical emission spectroscopy data. IEEE Trans. Semicond. Manufact. 2003, 16, 598.
    • (2003) IEEE Trans. Semicond. Manufact , vol.16 , pp. 598
    • Hong, S.J.1    May, G.S.2    Park, D.C.3
  • 15
    • 0036474729 scopus 로고    scopus 로고
    • Artificial neural-network based diagnosis of CVD barrel reactor
    • Bhatikar, S.R.; Mahajan, R.L. Artificial neural-network based diagnosis of CVD barrel reactor. IEEE Trans. Semicond. Manufact. 2002, 15, 71-78.
    • (2002) IEEE Trans. Semicond. Manufact , vol.15 , pp. 71-78
    • Bhatikar, S.R.1    Mahajan, R.L.2
  • 16
    • 23144435324 scopus 로고    scopus 로고
    • Artificial neural network prediction of material removal rate in electro discharge machining
    • Panda, D.K.; Rajat, R.K. Artificial neural network prediction of material removal rate in electro discharge machining. Mat. Manufact. Proc. 2005, 20, 645-672.
    • (2005) Mat. Manufact. Proc , vol.20 , pp. 645-672
    • Panda, D.K.1    Rajat, R.K.2
  • 17
    • 37349115303 scopus 로고    scopus 로고
    • Characterization of Al/SiC nanocomposite prepared by mechanical alloying process using artificial neural network model
    • Dashtbayazi, M.R. Characterization of Al/SiC nanocomposite prepared by mechanical alloying process using artificial neural network model. Mat. Manufact. Proc. 2008, 23, 37-45.
    • (2008) Mat. Manufact. Proc , vol.23 , pp. 37-45
    • Dashtbayazi, M.R.1
  • 18
    • 33750524602 scopus 로고    scopus 로고
    • Artificial neural network model for predicting stable and unstable regions in Cu-Zn alloys
    • Ravi, R.; Prasad, Y.V.R.K.; Sarma, V.V.S.; Rajdu, R.S. Artificial neural network model for predicting stable and unstable regions in Cu-Zn alloys. Mat. Manufact. Proc. 2006, 21, 756-760.
    • (2006) Mat. Manufact. Proc , vol.21 , pp. 756-760
    • Ravi, R.1    Prasad, Y.V.R.K.2    Sarma, V.V.S.3    Rajdu, R.S.4
  • 19
    • 29744441546 scopus 로고    scopus 로고
    • Multi criteria optimization of laser percussion drilling process using artificial neural network model combined with genetic algorithm
    • Nakhjavani, O.B.; Ghorejshi, M. Multi criteria optimization of laser percussion drilling process using artificial neural network model combined with genetic algorithm. Mat. Manufact. Proc. 2006, 21, 11-18.
    • (2006) Mat. Manufact. Proc , vol.21 , pp. 11-18
    • Nakhjavani, O.B.1    Ghorejshi, M.2
  • 20
    • 33750502209 scopus 로고    scopus 로고
    • A comparative study for modeling of hot-rolled steel plate classification using a statistical approach and neural-net systems
    • Das, P.; Bhattacharyay, B.K.; Datta, S. A comparative study for modeling of hot-rolled steel plate classification using a statistical approach and neural-net systems. Mat. Manufact. Proc. 21, 747-755.
    • Mat. Manufact. Proc , vol.21 , pp. 747-755
    • Das, P.1    Bhattacharyay, B.K.2    Datta, S.3
  • 21
    • 37849019979 scopus 로고    scopus 로고
    • Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks
    • Datta, S.; Pettersson, F.; Ganguly, S.; Subhas, H.; Chakraborti, N. Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks. Mat. Manufact. Proc. 2008, 23, 131-138.
    • (2008) Mat. Manufact. Proc , vol.23 , pp. 131-138
    • Datta, S.1    Pettersson, F.2    Ganguly, S.3    Subhas, H.4    Chakraborti, N.5
  • 22
    • 19944371197 scopus 로고    scopus 로고
    • Optimal design of alloy steels using multiobjective genetic algorithms
    • Mahfouf, M.; Jamei, M.; Linkens, D.A. Optimal design of alloy steels using multiobjective genetic algorithms. Mat. Manufact. Proc. 2005, 20, 553-567.
    • (2005) Mat. Manufact. Proc , vol.20 , pp. 553-567
    • Mahfouf, M.1    Jamei, M.2    Linkens, D.A.3
  • 23
    • 29744469780 scopus 로고    scopus 로고
    • Modeling of residual stress profile in finish hard turning
    • Jing, Y.Z.; Liang, S.Y.; Guowei, Z.; Yen, D. Modeling of residual stress profile in finish hard turning. Mat. Manufact. Proc. 2006, 21, 39-45.
    • (2006) Mat. Manufact. Proc , vol.21 , pp. 39-45
    • Jing, Y.Z.1    Liang, S.Y.2    Guowei, Z.3    Yen, D.4
  • 24
    • 23944446606 scopus 로고    scopus 로고
    • Prediction of silicon oxynitride plasma etching using a generalized regression neural network
    • Kim, B.; Lee, B.T. Prediction of silicon oxynitride plasma etching using a generalized regression neural network. J. Appl. Phys. 2005, 98, 034912.
    • (2005) J. Appl. Phys , vol.98 , pp. 034912
    • Kim, B.1    Lee, B.T.2
  • 25
    • 12444319290 scopus 로고    scopus 로고
    • Modeling plasma etching process using a radial basis function network
    • Kim, B.; Park, K. Modeling plasma etching process using a radial basis function network. Microelectron. Eng. 2005, 77, 150-157.
    • (2005) Microelectron. Eng , vol.77 , pp. 150-157
    • Kim, B.1    Park, K.2
  • 26
    • 33244483403 scopus 로고    scopus 로고
    • Modeling silicon oxynitride etch microtrenching using genetic algorithm and neural network
    • Kim, B.; Bae, J.; Lee, B.T. Modeling silicon oxynitride etch microtrenching using genetic algorithm and neural network. Microelecron Eng. 2006, 83, 513-519.
    • (2006) Microelecron Eng , vol.83 , pp. 513-519
    • Kim, B.1    Bae, J.2    Lee, B.T.3
  • 27
    • 33746265809 scopus 로고    scopus 로고
    • Prediction of radio frequency power effect on silicon nitride deposition using a genetic algorithm based neural network
    • Kim, B.; Bae, J.; Han, S.S. Prediction of radio frequency power effect on silicon nitride deposition using a genetic algorithm based neural network. Surf. Eng. 2006, 22, 63-68.
    • (2006) Surf. Eng , vol.22 , pp. 63-68
    • Kim, B.1    Bae, J.2    Han, S.S.3
  • 28
    • 0037470167 scopus 로고    scopus 로고
    • Plasma diagnosis by recognizing in-situ data using a modular backpropagation network
    • Kim, B.; Kim, S. Plasma diagnosis by recognizing in-situ data using a modular backpropagation network. Chemomem. Intell. Lab. Syst. 2003, 65, 231-240.
    • (2003) Chemomem. Intell. Lab. Syst , vol.65 , pp. 231-240
    • Kim, B.1    Kim, S.2
  • 30
    • 27744537729 scopus 로고    scopus 로고
    • Prediction of plasma processes using neural network and genetic algorithm
    • Kim, B.; Bae, J. Prediction of plasma processes using neural network and genetic algorithm. Solid-State Electron. 2005, 49, 1576-1580.
    • (2005) Solid-State Electron , vol.49 , pp. 1576-1580
    • Kim, B.1    Bae, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.