-
1
-
-
0031313734
-
Semiclassical states of nonlinear Schrödinger equations
-
Ambrosetti, A., Badiale, M., Cingolani, S. (1997). Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140:285-300.
-
(1997)
Arch. Rational Mech. Anal.
, vol.140
, pp. 285-300
-
-
Ambrosetti, A.1
Badiale, M.2
Cingolani, S.3
-
2
-
-
0040435197
-
Multiplicity results for some nonlinear Schrödinger equations with potentials
-
Ambrosetti, A., Malchiodi, A., Secchi, S. (2001). Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159:253-271.
-
(2001)
Arch. Ration. Mech. Anal.
, vol.159
, pp. 253-271
-
-
Ambrosetti, A.1
Malchiodi, A.2
Secchi, S.3
-
3
-
-
0036778772
-
Standing waves for nonlinear Schrödinger equations with a radial potential
-
Byeon, J. (2002). Standing waves for nonlinear Schrödinger equations with a radial potential. Nonlinear Anal. 50:1135-1151.
-
(2002)
Nonlinear Anal.
, vol.50
, pp. 1135-1151
-
-
Byeon, J.1
-
4
-
-
0036027321
-
Standing waves with a critical frequency for nonlinear Schrödinger equations
-
Byeon, J., Wang, Z.-Q. (2002). Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Rat. Mech. Anal. 165:295-316.
-
(2002)
Arch. Rat. Mech. Anal.
, vol.165
, pp. 295-316
-
-
Byeon, J.1
Wang, Z.-Q.2
-
5
-
-
0142230503
-
Standing waves with a critical frequency for nonlinear Schrödinger equations, II
-
Byeon, J., Wang, Z.-Q. (2003). Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calculus of Variations PDE 18:207-219.
-
(2003)
Calculus of Variations PDE
, vol.18
, pp. 207-219
-
-
Byeon, J.1
Wang, Z.-Q.2
-
6
-
-
0001617997
-
The effect of domain shape on the number of positive solutions of certain nonlinear equations
-
Dancer, E. N. (1988). The effect of domain shape on the number of positive solutions of certain nonlinear equations. J. Differential Equations 74:120-156.
-
(1988)
J. Differential Equations
, vol.74
, pp. 120-156
-
-
Dancer, E.N.1
-
8
-
-
0005602251
-
The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations
-
Dancer, E. N., Lam, K. Y., Yan, S. (1998). The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations. Abstr. Appl. Anal. 3:293-318.
-
(1998)
Abstr. Appl. Anal.
, vol.3
, pp. 293-318
-
-
Dancer, E.N.1
Lam, K.Y.2
Yan, S.3
-
9
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
Del Pino, M., Felmer, P. L. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations PDE 4:121-137.
-
(1996)
Calculus of Variations PDE
, vol.4
, pp. 121-137
-
-
Del Pino, M.1
Felmer, P.L.2
-
10
-
-
0031237479
-
Semi-classical states for nonlinear Schrödinger equations
-
Del Pino, M., Felmer, P. L. (1997). Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149:245-265.
-
(1997)
J. Funct. Anal.
, vol.149
, pp. 245-265
-
-
Del Pino, M.1
Felmer, P.L.2
-
11
-
-
0000260189
-
Multi-peak bound states for nonlinear Schrödinger equations
-
Del Pino, M., Felmer, P. L. (1998). Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré 15:127-149.
-
(1998)
Ann. Inst. Henri Poincaré
, vol.15
, pp. 127-149
-
-
Del Pino, M.1
Felmer, P.L.2
-
12
-
-
0036026058
-
Semi-classical states of nonlinear Schrödinger equations: A variational reduction method
-
Del Pino, M., Felmer, P. L. (2002). Semi-classical states of nonlinear Schrödinger equations: A variational reduction method. Math. Ann. 324:1-32.
-
(2002)
Math. Ann.
, vol.324
, pp. 1-32
-
-
Del Pino, M.1
Felmer, P.L.2
-
13
-
-
0032345338
-
Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential
-
Del Pino, M., Felmer, P. L., Miyagaki, O. H. (1998). Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential. Nonlinear Anal. TMA 34:979-989.
-
(1998)
Nonlinear Anal. TMA
, vol.34
, pp. 979-989
-
-
Del Pino, M.1
Felmer, P.L.2
Miyagaki, O.H.3
-
14
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential
-
Floer, A., Weinstein, A. (1986). Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential. J. Funct. Anal. 69:397-408.
-
(1986)
J. Funct. Anal.
, vol.69
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
15
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
Gidas, B., Ni, W. M., Nirenberg, L. (1979). Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68:209-243.
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
16
-
-
0003549965
-
-
Berlin, Heidelberg, New York and Tokyo: Springer. Grundlehren
-
Gilbarg, D., Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order. 2nd ed. Berlin, Heidelberg, New York and Tokyo: Springer. Grundlehren 224.
-
(1983)
Elliptic Partial Differential Equations of Second Order. 2nd Ed.
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
17
-
-
0000616123
-
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
-
Gui, C. (1996). Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. PDE 21:787-820.
-
(1996)
Comm. PDE
, vol.21
, pp. 787-820
-
-
Gui, C.1
-
18
-
-
0037137992
-
Structure of positive radial solutions to scalar field equations with harmonic potential
-
Hirose, M., Ohta, M. (2002). Structure of positive radial solutions to scalar field equations with harmonic potential. J. Differential Equations 178:519-540.
-
(2002)
J. Differential Equations
, vol.178
, pp. 519-540
-
-
Hirose, M.1
Ohta, M.2
-
19
-
-
0000825718
-
On interacting bumps of semi-classical states of nonlinear Schrödinger equations
-
Kang, X., Wei, J. (2000). On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5:899-928.
-
(2000)
Adv. Differential Equations
, vol.5
, pp. 899-928
-
-
Kang, X.1
Wei, J.2
-
21
-
-
0000264842
-
On a singularly perturbed elliptic equation
-
Li, Y. Y. (1997). On a singularly perturbed elliptic equation. Adv. Differential Equations. 2:955-980.
-
(1997)
Adv. Differential Equations
, vol.2
, pp. 955-980
-
-
Li, Y.Y.1
-
22
-
-
0000984635
-
On a singularly perturbed equation with Neumann boundary condition
-
Li, Y. Y. (1998). On a singularly perturbed equation with Neumann boundary condition. Comm. Partial Differential Equations 23:487-545.
-
(1998)
Comm. Partial Differential Equations
, vol.23
, pp. 487-545
-
-
Li, Y.Y.1
-
23
-
-
0032348339
-
The dirichlet problem for singularly perturbed elliptic equations
-
Li, Y. Y., Nirenberg, L. (1998). The Dirichlet problem for singularly perturbed elliptic equations. Comm. Pure Appl. Math. 51:1445-1490.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 1445-1490
-
-
Li, Y.Y.1
Nirenberg, L.2
-
27
-
-
84946264643
-
a
-
a. Comm. PDE 13:1499-1519.
-
(1988)
Comm. PDE
, vol.13
, pp. 1499-1519
-
-
Oh, Y.G.1
-
29
-
-
0000998584
-
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
-
Oh, Y. G. (1990). On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131:223-253.
-
(1990)
Comm. Math. Phys.
, vol.131
, pp. 223-253
-
-
Oh, Y.G.1
-
31
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
Rabinowitz, P. H. (1992). On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43:270-291.
-
(1992)
Z. Angew. Math. Phys.
, vol.43
, pp. 270-291
-
-
Rabinowitz, P.H.1
-
33
-
-
0000540347
-
Existence of solitary waves in higher demensions
-
Strauss, W. (1977). Existence of solitary waves in higher demensions. Comm. Math. Phys. 55:149-162.
-
(1977)
Comm. Math. Phys.
, vol.55
, pp. 149-162
-
-
Strauss, W.1
-
35
-
-
34250081368
-
On concentration of positive bound states of nonlinear Schrödinger equations
-
Wang, X. (1993). On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153:229-244.
-
(1993)
Comm. Math. Phys.
, vol.153
, pp. 229-244
-
-
Wang, X.1
-
36
-
-
0033589578
-
Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations
-
Wang, Z.-Q. (1999). Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations. J. Differential Equations 159:102-137.
-
(1999)
J. Differential Equations
, vol.159
, pp. 102-137
-
-
Wang, Z.-Q.1
|