-
1
-
-
0031313734
-
Semiclassical states of nonlinear Schrödinger equations
-
[ABC]
-
[ABC] AMBROSETTI, A., BADIALE, M., CINGOLANI, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140, 285-300 (1997)
-
(1997)
Arch. Rational Mech. Anal.
, vol.140
, pp. 285-300
-
-
Ambrosetti, A.1
Badiale, M.2
Cingolani, S.3
-
2
-
-
0001490475
-
Existence of many nonequivalent non-radial positive solutions of semilinear elliptic equations on three dimensional annuli
-
[By1]
-
[By1] BYEON, J.: Existence of many nonequivalent non-radial positive solutions of semilinear elliptic equations on three dimensional annuli. J. Differential Equations 136, 136-165 (1997)
-
(1997)
J. Differential Equations
, vol.136
, pp. 136-165
-
-
Byeon, J.1
-
3
-
-
0000696702
-
Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains
-
[By2]
-
[By2] BYEON, J.: Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains. Comm. in P. D. E. 22, 1731-1769 (1997)
-
(1997)
Comm. in P. D. E.
, vol.22
, pp. 1731-1769
-
-
Byeon, J.1
-
4
-
-
23044531081
-
Nonlinear elliptic problems on singularly perturbed domains
-
[By3]
-
[By3] BYEON, J.: Nonlinear elliptic problems on singularly perturbed domains. Proc. Roy. Soc. Edinburgh Sect. A 31, 1023-1037 (2001)
-
(2001)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.31
, pp. 1023-1037
-
-
Byeon, J.1
-
5
-
-
0036778772
-
Standing waves for nonlinear Schrödinger equations with a radial potential
-
[By4]
-
[By4] BYEON, J.: Standing waves for nonlinear Schrödinger equations with a radial potential. Nonlinear Analysis, TMA 50, 1135-1151 (2002)
-
(2002)
Nonlinear Analysis, TMA
, vol.50
, pp. 1135-1151
-
-
Byeon, J.1
-
7
-
-
0001617997
-
The effect of the domain shape on the number of positive solutions of certain nonlinear equations
-
[D]
-
[D] DANCER, E.N.: The effect of the domain shape on the number of positive solutions of certain nonlinear equations. J. Differential Equations 74, 120-156 (1988)
-
(1988)
J. Differential Equations
, vol.74
, pp. 120-156
-
-
Dancer, E.N.1
-
8
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
[DF1]
-
[DF1] DEL PINO, M., FELMER, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE 4, 121-137 (1996)
-
(1996)
Calculus of Variations and PDE
, vol.4
, pp. 121-137
-
-
Del Pino, M.1
Felmer, P.L.2
-
9
-
-
0031237479
-
Semi-classical states for nonlinear Schrödinger equations
-
[DF2]
-
[DF2] DEL PINO, M., FELMER, P.L.: Semi-classical states for nonlinear Schrödinger equations. J. Functional Analysis 149, 245-265 (1997)
-
(1997)
J. Functional Analysis
, vol.149
, pp. 245-265
-
-
Del Pino, M.1
Felmer, P.L.2
-
10
-
-
0000260189
-
Multi-peak bound states for nonlinear Schrödinger equations
-
[DF3]
-
[DF3] DEL PINO, M., FELMER, P.L.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré 15, 127-149 (1998)
-
(1998)
Ann. Inst. Henri Poincaré
, vol.15
, pp. 127-149
-
-
Del Pino, M.1
Felmer, P.L.2
-
12
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential
-
[FW]
-
[FW] FLOER, A., WEINSTEIN, A.: Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential J. Functional Analysis. 69, 397-408 (1986)
-
(1986)
J. Functional Analysis
, vol.69
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
13
-
-
0000616123
-
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
-
[G]
-
[G] Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. Partial Differential Equations 21, 787-820 (1996)
-
(1996)
Comm. Partial Differential Equations
, vol.21
, pp. 787-820
-
-
Gui, C.1
-
15
-
-
0000825718
-
On interacting bumps of semi-classical states of nonlinear Schrödinger equations
-
[KW]
-
[KW] KANG, X., WEI, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5, 899-928 (2000)
-
(2000)
Adv. Differential Equations
, vol.5
, pp. 899-928
-
-
Kang, X.1
Wei, J.2
-
16
-
-
0000264842
-
On a singularly perturbed elliptic equation
-
[L]
-
[L] LI, Y.Y.: On a singularly perturbed elliptic equation. Adv. Differential Equations 2, 955-980 (1997)
-
(1997)
Adv. Differential Equations
, vol.2
, pp. 955-980
-
-
Li, Y.Y.1
-
17
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case - Part 1
-
[Lio1]
-
[Lio1] LIONS, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1. Ann. Inst. H. Poincaré 1, 109-145 (1984)
-
(1984)
Ann. Inst. H. Poincaré
, vol.1
, pp. 109-145
-
-
Lions, P.L.1
-
18
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case - Part 2
-
[Lio2]
-
[Lio2] LIONS, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part 2. Ann. Inst. H. Poincaré 1, 223-283 (1984)
-
(1984)
Ann. Inst. H. Poincaré
, vol.1
, pp. 223-283
-
-
Lions, P.L.1
-
23
-
-
0000998584
-
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
-
[O3]
-
[O3] OH, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131, 223-253 (1990)
-
(1990)
Comm. Math. Phys.
, vol.131
, pp. 223-253
-
-
Oh, Y.G.1
-
25
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
[R]
-
[R] RABINOWITZ, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992)
-
(1992)
Z. Angew. Math. Phys.
, vol.43
, pp. 270-291
-
-
Rabinowitz, P.H.1
-
27
-
-
34250081368
-
On concentration of positive bound states of nonlinear Schrödinger equations
-
[W]
-
[W] WANG, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153, 229-244 (1993)
-
(1993)
Comm. Math. Phys.
, vol.153
, pp. 229-244
-
-
Wang, X.1
-
28
-
-
0033589578
-
Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations
-
[Wa]
-
[Wa] WANG, Z.Q.: Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations. J. Differential Equations 159, 102-137 (1999)
-
(1999)
J. Differential Equations
, vol.159
, pp. 102-137
-
-
Wang, Z.Q.1
|