메뉴 건너뛰기




Volumn 25, Issue 2, 2008, Pages 279-288

Clustering approaches to identifying gene expression patterns from DNA microarray data

Author keywords

Co expression; DNA microarray; Fuzzy clustering; Hierarchical clustering; K means; Self organizing map

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 44949224555     PISSN: 10168478     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (98)

References (46)
  • 2
    • 0038206898 scopus 로고    scopus 로고
    • Clustering-based approaches to discovering and visualizing mciroarray data patterns
    • Azuaje, F. (2003). Clustering-based approaches to discovering and visualizing mciroarray data patterns. Brief. Bioinform. 4, 31-42.
    • (2003) Brief. Bioinform , vol.4 , pp. 31-42
    • Azuaje, F.1
  • 3
    • 16344369007 scopus 로고    scopus 로고
    • Clustering of gene expression data using a local shape-based similarity measure
    • Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., and Kämper, J. (2005). Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069-1077.
    • (2005) Bioinformatics , vol.21 , pp. 1069-1077
    • Balasubramaniyan, R.1    Hüllermeier, E.2    Weskamp, N.3    Kämper, J.4
  • 4
    • 4444283081 scopus 로고    scopus 로고
    • Fuzzy J-means and VNS methods for clustering genes from microarray data
    • Belacel, N., Čuperlović-Culf, M., Laflamme, M., and Ouellette, R. (2004). Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics 20, 1690-1701.
    • (2004) Bioinformatics , vol.20 , pp. 1690-1701
    • Belacel, N.1    Čuperlović-Culf, M.2    Laflamme, M.3    Ouellette, R.4
  • 5
    • 33846606051 scopus 로고    scopus 로고
    • Clustering methods for microarray gene expression data
    • Belacel, N., Wang, Q., and Cuperlovic-culf, M. (2006). Clustering methods for microarray gene expression data. Omics 10, 507-531.
    • (2006) Omics , vol.10 , pp. 507-531
    • Belacel, N.1    Wang, Q.2    Cuperlovic-culf, M.3
  • 6
    • 0036359730 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput. 7, 6-17.
    • (2002) Pac. Symp. Biocomput , vol.7 , pp. 6-17
    • Ben-Hur, A.1    Elisseeff, A.2    Guyon, I.3
  • 8
    • 23844434593 scopus 로고    scopus 로고
    • Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data
    • Boutros, P.C., and Okey, A.B. (2005). Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform. 6, 331-343.
    • (2005) Brief. Bioinform , vol.6 , pp. 331-343
    • Boutros, P.C.1    Okey, A.B.2
  • 9
    • 33645579248 scopus 로고    scopus 로고
    • Hybrid hierarchical clustering with applications to microarray data
    • Chipman, H. (2006). Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7, 286-301.
    • (2006) Biostatistics , vol.7 , pp. 286-301
    • Chipman, H.1
  • 10
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means for clustering microarray data
    • Dembélé, D., and Kastner, P. (2003). Fuzzy C-means for clustering microarray data. Bioinformatics 19, 973-980.
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembélé, D.1    Kastner, P.2
  • 11
    • 33846060705 scopus 로고    scopus 로고
    • Normalization of microarray data: Single-labeled and dual-labeled arrays
    • Do, J.H., and Choi, D.K. (2006). Normalization of microarray data: single-labeled and dual-labeled arrays. Mol. Cells 22, 254-261.
    • (2006) Mol. Cells , vol.22 , pp. 254-261
    • Do, J.H.1    Choi, D.K.2
  • 12
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • research0036
    • Dudoit, S., and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3, research0036.
    • (2002) Genome Biol , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 14
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • Fowlkes, E.B., and Mallows, C.L. (1983). A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-584.
    • (1983) J. Am. Stat. Assoc , vol.78 , pp. 553-584
    • Fowlkes, E.B.1    Mallows, C.L.2
  • 15
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601-620.
    • (2000) J. Comput. Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 16
    • 39449096984 scopus 로고    scopus 로고
    • FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
    • Fu, L., and Medico, E. (2007). FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8, 3.
    • (2007) BMC Bioinformatics , vol.8 , pp. 3
    • Fu, L.1    Medico, E.2
  • 17
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional co-regulation of yeast gene expression through fuzzy K-means clustering
    • Gasch, A.U., and Eisen, M.B. (2002). Exploring the conditional co-regulation of yeast gene expression through fuzzy K-means clustering. Genome Biol. 3, 1-22.
    • (2002) Genome Biol , vol.3 , pp. 1-22
    • Gasch, A.U.1    Eisen, M.B.2
  • 20
    • 34547131280 scopus 로고    scopus 로고
    • A robust measure of correlation between two genes on a microarray
    • Hardin, J., Mitani, A., Hicks, L., and VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC Bioinformatics 8, 220.
    • (2007) BMC Bioinformatics , vol.8 , pp. 220
    • Hardin, J.1    Mitani, A.2    Hicks, L.3    VanKoten, B.4
  • 21
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • Heyer, L.J., Kruglyak, S., and Yooseph, S. (1999). Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9, 1106-1115.
    • (1999) Genome Res , vol.9 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 22
    • 0242475332 scopus 로고    scopus 로고
    • An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data
    • Hsu, A.L., Tang, S.-L., and Halgamuge, S.K. (2003). An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics 19, 2131-2140.
    • (2003) Bioinformatics , vol.19 , pp. 2131-2140
    • Hsu, A.L.1    Tang, S.-L.2    Halgamuge, S.K.3
  • 23
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels, J., Friedlander, G., Bergman, S., Sarig, O., Ziv, Y., and Barkai, N. (2002). Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370-377.
    • (2002) Nat. Genet , vol.31 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergman, S.3    Sarig, O.4    Ziv, Y.5    Barkai, N.6
  • 24
    • 33646230770 scopus 로고    scopus 로고
    • Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology
    • Ikota, H., Kinjo, S., Yokoo, H., and Nakazato, Y. (2006). Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol. (Berl) 111, 475-482.
    • (2006) Acta Neuropathol. (Berl) , vol.111 , pp. 475-482
    • Ikota, H.1    Kinjo, S.2    Yokoo, H.3    Nakazato, Y.4
  • 26
    • 33846619792 scopus 로고    scopus 로고
    • Towards interactive exploration of gene expression patterns
    • Jiang, D., Pei, J., and Zhang, A. (2003). Towards interactive exploration of gene expression patterns. ACM SIGKDD Explor Newslett 5, 79-90.
    • (2003) ACM SIGKDD Explor Newslett , vol.5 , pp. 79-90
    • Jiang, D.1    Pei, J.2    Zhang, A.3
  • 28
    • 33847657554 scopus 로고    scopus 로고
    • Measuring similarities between gene expression profiles through new data transformation
    • Kim, K., Zhang, S., Jiang, K., Cai, L., Lee, I.-B., Feldman, L.J., and Huang, H. (2007). Measuring similarities between gene expression profiles through new data transformation. BMC Bioinformatics 8, 29.
    • (2007) BMC Bioinformatics , vol.8 , pp. 29
    • Kim, K.1    Zhang, S.2    Jiang, K.3    Cai, L.4    Lee, I.-B.5    Feldman, L.J.6    Huang, H.7
  • 29
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T. (1990). The self-organizing map. Proc. IEEE 78, 1464-1479.
    • (1990) Proc. IEEE , vol.78 , pp. 1464-1479
    • Kohonen, T.1
  • 32
    • 13244255357 scopus 로고    scopus 로고
    • Incremental genetic K-means algorithm and its application in gene expression data analysis
    • Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S.J. (2004b). Incremental genetic K-means algorithm and its application in gene expression data analysis. BMC Bioinformatics 5, 172.
    • (2004) BMC Bioinformatics , vol.5 , pp. 172
    • Lu, Y.1    Lu, S.2    Fotouhi, F.3    Deng, Y.4    Brown, S.J.5
  • 33
    • 0000415463 scopus 로고
    • Dissimilarity analysis: A new technic of hierarchical subdivision
    • Macnaughton-Smith, P., Williams, W.T., Dale, M.B., and Mockett, L.G. (1964). Dissimilarity analysis: a new technic of hierarchical subdivision. Nature 202, 1034-1035.
    • (1964) Nature , vol.202 , pp. 1034-1035
    • Macnaughton-Smith, P.1    Williams, W.T.2    Dale, M.B.3    Mockett, L.G.4
  • 35
    • 0037707302 scopus 로고    scopus 로고
    • Adaptive double self-organizing maps for clustering gene expression profiles
    • Ressom, H., Wang, D., and Natarajan, P. (2003). Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw. 16, 633-640.
    • (2003) Neural Netw , vol.16 , pp. 633-640
    • Ressom, H.1    Wang, D.2    Natarajan, P.3
  • 36
    • 4444367133 scopus 로고    scopus 로고
    • Biclustering microarray data by Gibbs sampling
    • Sheng, Q., Moreau, Y., and De Moor, B. (2003). Biclustering microarray data by Gibbs sampling. Bioinformatics 19 (Suppl. 2), ii196-ii205.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Sheng, Q.1    Moreau, Y.2    De Moor, B.3
  • 37
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim, D.K. (2002). From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32 (Suppl. 2), 502-508.
    • (2002) Nat. Genet , vol.32 , Issue.SUPPL. 2 , pp. 502-508
    • Slonim, D.K.1
  • 38
    • 0035111897 scopus 로고    scopus 로고
    • A new model of self-organizing neural networks and its application in data projection
    • Su, M., and Chang, H. (2001). A new model of self-organizing neural networks and its application in data projection. IEEE Trans. Neural Netw. 12, 153-158.
    • (2001) IEEE Trans. Neural Netw , vol.12 , pp. 153-158
    • Su, M.1    Chang, H.2
  • 42
    • 2942601439 scopus 로고    scopus 로고
    • Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data
    • Wang, J., Bo, T.H., Jonassen, I., and Hovig, E. (2003). Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4, 60.
    • (2003) BMC Bioinformatics , vol.4 , pp. 60
    • Wang, J.1    Bo, T.H.2    Jonassen, I.3    Hovig, E.4
  • 44
    • 0034729586 scopus 로고    scopus 로고
    • A fuzzy logic approach to analyzing gene expression data
    • Woolf, P.J., and Wang, Y. (2000). A fuzzy logic approach to analyzing gene expression data. Physiol. Genomics 3, 9-15.
    • (2000) Physiol. Genomics , vol.3 , pp. 9-15
    • Woolf, P.J.1    Wang, Y.2
  • 45
    • 33947389255 scopus 로고    scopus 로고
    • Determination of the minimum number of microarray experiments for discovery of gene expression patterns
    • Wu, F.X., Zhang, W.J., and Kusalik, A.J. (2006). Determination of the minimum number of microarray experiments for discovery of gene expression patterns. BMC Bioinformatics 7 (Suppl. 4), S13.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 4
    • Wu, F.X.1    Zhang, W.J.2    Kusalik, A.J.3
  • 46
    • 34648825751 scopus 로고    scopus 로고
    • A hierarchical clustering method for estimating copy number variation
    • Xing, B., Greenwood, C.M., and Bull, S.B. (2007). A hierarchical clustering method for estimating copy number variation. Biostatistics 8, 632-653.
    • (2007) Biostatistics , vol.8 , pp. 632-653
    • Xing, B.1    Greenwood, C.M.2    Bull, S.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.