메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 651-682

Graphical models for structured classification, with an application to interpreting images of protein subcellular location patterns

Author keywords

Approximate inference algorithms; Factor graphs; Location proteomics; Protein subcellular location patterns; Structured classification

Indexed keywords

ALGORITHMS; BIOINFORMATICS; BIOMOLECULES; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL GEOMETRY; COMPUTATIONAL METHODS; COMPUTER NETWORKS; CRACK PROPAGATION; EVOLUTIONARY ALGORITHMS; FUNCTION EVALUATION; GRAPH THEORY; GRAPHIC METHODS; HIDDEN MARKOV MODELS; IMAGE ENHANCEMENT; INFERENCE ENGINES; LEAD; MARKOV PROCESSES; METROPOLITAN AREA NETWORKS; NETWORK PROTOCOLS; PIGMENTS; PROTEINS;

EID: 44649153825     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (30)
  • 2
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • M. V. Boland and R. F. Murphy. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17:1213-1223, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 4
    • 33745835457 scopus 로고    scopus 로고
    • A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images
    • S.-C. Chen and R. F. Murphy. A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images. BMC Bioinformatics, 7:90, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 90
    • Chen, S.-C.1    Murphy, R.F.2
  • 7
    • 33745948356 scopus 로고    scopus 로고
    • Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics
    • X. Chen, M. Velliste, and R. F. Murphy. Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics. Cytometry, 69A:631-640, 2006c.
    • (2006) Cytometry , vol.69 A , pp. 631-640
    • Chen, X.1    Velliste, M.2    Murphy, R.F.3
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination and high throughput microscopy
    • E. Glory and R. F. Murphy. Automated subcellular location determination and high throughput microscopy. Developmental Cell, 12:7-16, 2007.
    • (2007) Developmental Cell , vol.12 , pp. 7-16
    • Glory, E.1    Murphy, R.F.2
  • 12
    • 6344281239 scopus 로고    scopus 로고
    • On the uniqueness of loopy belief propagation fixed points
    • T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural Computation, 16: 2379-2413, 2004.
    • (2004) Neural Computation , vol.16 , pp. 2379-2413
    • Heskes, T.1
  • 13
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • K. Huang and R. F. Murphy. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics, 5:78, 2004.
    • (2004) BMC Bioinformatics , vol.5 , pp. 78
    • Huang, K.1    Murphy, R.F.2
  • 15
    • 4244181223 scopus 로고    scopus 로고
    • Inference in Bayesian networks using nested junction trees
    • Kluwer Academic Press
    • U. Kjærulff. Inference in Bayesian networks using nested junction trees. In Learning in Graphical Models, pages 51-74. Kluwer Academic Press, 1998.
    • (1998) Learning in Graphical Models , pp. 51-74
    • Kjærulff, U.1
  • 17
    • 44649188548 scopus 로고    scopus 로고
    • D. Koller and N. Friedman. Bayesian Networks and Beyond. 2007. Draft manuscript.
    • D. Koller and N. Friedman. Bayesian Networks and Beyond. 2007. Draft manuscript.
  • 19
    • 33947507692 scopus 로고    scopus 로고
    • Location-based activity recognition
    • Y. Weiss, B. Schölkopf, and J. Piatt, editors, Cambridge, MA, MIT Press
    • L. Liao, D. Fox, and H. Kautz. Location-based activity recognition. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems (NIPS), volume 18, pages 787-794, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural Information Processing Systems (NIPS) , vol.18 , pp. 787-794
    • Liao, L.1    Fox, D.2    Kautz, H.3
  • 20
    • 10044295425 scopus 로고    scopus 로고
    • A Note on Platt's Probabilistic Outputs for Support Vector Machines
    • Technical report, Department of Computer Science, National Taiwan University
    • H.-T. Lin, C.-J. Lin, and R. C. Weng. A Note on Platt's Probabilistic Outputs for Support Vector Machines, 2003. Technical report, Department of Computer Science, National Taiwan University.
    • (2003)
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 25
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • J. Piatt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, pages 61-74. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Piatt, J.1
  • 29
    • 84988779772 scopus 로고    scopus 로고
    • Correctness of local probability propagation in graphical models with loops
    • Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural Computation, 12:1-41, 2000.
    • (2000) Neural Computation , vol.12 , pp. 1-41
    • Weiss, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.