-
1
-
-
0003790413
-
-
Springer: Berlin
-
Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph. Eds., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Berlin; 2001; Vol. 80.
-
(2001)
Carbon Nanotubes: Synthesis, Structure, Properties, and Applications
, vol.80
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
Avouris, P.3
-
2
-
-
0034276088
-
-
Postma, H. W. C.; Sellmeijer, A.; Dekker, C. Adv. Mater. 2000, 12, 1299-1302.
-
(2000)
Adv. Mater.
, vol.12
, pp. 1299-1302
-
-
Postma, H.W.C.1
Sellmeijer, A.2
Dekker, C.3
-
3
-
-
18044400616
-
-
Zhang, Y.; Chang, A.; Cao, J.; Wang, Q.; Kim, W.; Li, Y.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. Appl. Phys. Lett. 2001, 79, 3155-3157.
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 3155-3157
-
-
Zhang, Y.1
Chang, A.2
Cao, J.3
Wang, Q.4
Kim, W.5
Li, Y.6
Morris, N.7
Yenilmez, E.8
Kong, J.9
Dai, H.10
-
4
-
-
15544375926
-
-
O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593-596.
-
(2002)
Science
, vol.297
, pp. 593-596
-
-
O'Connell, M.J.1
Bachilo, S.M.2
Huffman, C.B.3
Moore, V.C.4
Strano, M.S.5
Haroz, E.H.6
Rialon, K.L.7
Boul, P.J.8
Noon, W.H.9
Kittrell, C.10
Ma, J.11
Hauge, R.H.12
Weisman, R.B.13
Smalley, R.E.14
-
5
-
-
0345690131
-
-
Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 302, 1545-1548.
-
(2003)
Science
, vol.302
, pp. 1545-1548
-
-
Zheng, M.1
Jagota, A.2
Strano, M.S.3
Santos, A.P.4
Barone, P.5
Chou, S.G.6
Diner, B.A.7
Dresselhaus, M.S.8
Mclean, R.S.9
Onoa, G.B.10
Samsonidze, G.G.11
Semke, E.D.12
Usrey, M.13
Walls, D.J.14
-
6
-
-
0141461364
-
-
Chen, Z.; Du, X.; Du, M. H.; Rancken, C. D.; Cheng, H. P.; Rinzler, A. G. Nano Lett. 2003, 3, 1245-1249.
-
(2003)
Nano Lett.
, vol.3
, pp. 1245-1249
-
-
Chen, Z.1
Du, X.2
Du, M.H.3
Rancken, C.D.4
Cheng, H.P.5
Rinzler, A.G.6
-
7
-
-
0038299557
-
-
Krupke, R.; Hennrich, F.; Löhneysen, H. v.; Kappes, M. M. Science 2003, 301, 344-347.
-
(2003)
Science
, vol.301
, pp. 344-347
-
-
Krupke, R.1
Hennrich, F.2
Löhneysen, H.V.3
Kappes, M.M.4
-
8
-
-
0022655537
-
-
Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Opt. Lett. 1986, 11, 288-290.
-
(1986)
Opt. Lett.
, vol.11
, pp. 288-290
-
-
Ashkin, A.1
Dziedzic, J.M.2
Bjorkholm, J.E.3
Chu, S.4
-
11
-
-
4444261990
-
-
note
-
We used a commercial laser tweezers system made by Cell Robotics International, Inc. (Albuquerque, NM).
-
-
-
-
12
-
-
0035984039
-
-
The width of the microfluidic channels used in this study was about 100 μm. The height was 85 μm unless specified in the text. The PDMS chips were irreversibly bonded to a glass coverslip using oxygen plasma. For any flow experiments, syringe pumps (PHD 2000, Harvard Scientific, Hilliston, MA) were used to control the flows
-
The microfluidic chips were fabricated from poly(dimethyl siloxane) (PDMS) following the methods described in McDonald, J. C.; Whitesides, G. M. Acc. Chem. Res. 2002, 35, 491-499. The width of the microfluidic channels used in this study was about 100 μm. The height was 85 μm unless specified in the text. The PDMS chips were irreversibly bonded to a glass coverslip using oxygen plasma. For any flow experiments, syringe pumps (PHD 2000, Harvard Scientific, Hilliston, MA) were used to control the flows.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 491-499
-
-
McDonald, J.C.1
Whitesides, G.M.2
-
13
-
-
4444238231
-
-
note
-
The SWNT-DNA-TAMRA solution was prepared using a method slightly modified from that described in ref 5. HiPco-SWNTs (Carbon Nanotechnologies Inc., Houston, TX) were sonicated in single-stranded DNA oligomer (poly(T) 30-mer) labeled with a TAMRA dye molecule (DNA-TAMRA, from Qiagen, Valencia, CA) water solution followed by centrifugation. A spin column with a polyethersulphone (PES) membrane (PALL Life Science, Ann Arbor, MI) was used to remove free DNA from the supernatant solution. The filtration steps were repeated to minimize the free DNA-TAMRA in the solution. The SWNT concentration in the CNT-DNA-TAMRA solution is ∼0.1 mg/mL. The remaining free DNA-TAMRA in the solution is dependent on the number of filtration steps and the pore size of the membrane.
-
-
-
-
14
-
-
0347600637
-
-
Alvaro, M.; Atienzar, P.; Bourdelande, J. L.; Garcia, H. Chem. Phys. Lett. 2004, 384, 119-121.
-
(2004)
Chem. Phys. Lett.
, vol.384
, pp. 119-121
-
-
Alvaro, M.1
Atienzar, P.2
Bourdelande, J.L.3
Garcia, H.4
-
15
-
-
4444247709
-
-
note
-
Absorption and scattering of excitation light are two other effects that can reduce the fluorescence intensity, but these effects are not dominant as shown in Figure S2 in Supporting Information.
-
-
-
-
16
-
-
4444277900
-
-
note
-
The SWNT-DNA solution was prepared using the same method described in ref 13 except that the single-stranded DNA oligomer (poly(T) 30-mer, from Qiagen, Valencia, CA) used here does not have any TAMRA tag. The SWNT concentration obtained for the SWNT-DNA solution is ∼0.1 mg/mL. The mixture solution was made by mixing 50 μL SWNT-DNA solution and 10 μL DNA-TAMRA (0.02 μM) solution.
-
-
-
-
17
-
-
4444270946
-
-
note
-
The SWNT-SDS solution was provided by Carbon Nanotechnologies Inc., Houston, TX. The SWNT concentration in the SWNT-SDS solution is ∼0.02 mg/mL. Rhodamine 6G was obtained from Sigma-Aldrich, St. Louis, MO.
-
-
-
-
18
-
-
0033479117
-
-
Smith, S. P.; Bhalotra, S. R.; Brody, A. L.; Brown, B. L.; Boyda, E. K.; Prentiss, M. Am. J. Phys. 1999, 67, 26-35.
-
(1999)
Am. J. Phys.
, vol.67
, pp. 26-35
-
-
Smith, S.P.1
Bhalotra, S.R.2
Brody, A.L.3
Brown, B.L.4
Boyda, E.K.5
Prentiss, M.6
|