메뉴 건너뛰기




Volumn 18, Issue 1, 2008, Pages 1-23

Software effort estimation by analogy using attribute selection based on rough set analysis

Author keywords

Attribute weighting; Effort estimation by analogy; Feature selection; Heuristics; Learning; Rough sets

Indexed keywords

DATABASE SYSTEMS; FEATURE EXTRACTION; HEURISTIC METHODS; LEARNING SYSTEMS; ROUGH SET THEORY;

EID: 43949108552     PISSN: 02181940     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218194008003532     Document Type: Article
Times cited : (19)

References (28)
  • 1
    • 0000356302 scopus 로고
    • Examining the feasibility of a, case-based reasoning model for software effort estimation
    • T. Mukhopadhyay, S. Vicinanza, and M. J. Prietula, Examining the feasibility of a, case-based reasoning model for software effort estimation. MIS Quarterly 16 (1992) 155-171.
    • (1992) MIS Quarterly , vol.16 , pp. 155-171
    • Mukhopadhyay, T.1    Vicinanza, S.2    Prietula, M.J.3
  • 3
    • 33846691171 scopus 로고    scopus 로고
    • A flexible method for effort estimation by analogy
    • April, DOI 10.1007/s10664-006-7552-4
    • J. Li, G. Rune, A. Al-Emran, M. M. Ritcher, A flexible method for effort estimation by analogy, Empirical Software Engineering (April 2006) DOI 10.1007/s10664-006-7552-4.
    • (2006) Empirical Software Engineering
    • Li, J.1    Rune, G.2    Al-Emran, A.3    Ritcher, M.M.4
  • 5
    • 0036605452 scopus 로고    scopus 로고
    • Estimating maintenance effort by analogy
    • H. K. N. Leung, Estimating maintenance effort by analogy, Empirical Software Engineering 7 (2002) 157-175.
    • (2002) Empirical Software Engineering , vol.7 , pp. 157-175
    • Leung, H.K.N.1
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence 97 (1997) 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 9
    • 28244470710 scopus 로고    scopus 로고
    • Finding the right data for software cost modeling
    • Z. Chen, B. Boehm, T. Menzies and D. Port, Finding the right data for software cost modeling, IEEE Software 22 (2005) 38-46.
    • (2005) IEEE Software , vol.22 , pp. 38-46
    • Chen, Z.1    Boehm, B.2    Menzies, T.3    Port, D.4
  • 12
    • 4544306553 scopus 로고    scopus 로고
    • A rough sets based approach to feature selection
    • June
    • M. Zhang and J. Yao, A rough sets based approach to feature selection, in Proc. 23rd Int. Conf. NAFIPS, June 2004, pp. 434-439.
    • (2004) Proc. 23rd Int. Conf. NAFIPS , pp. 434-439
    • Zhang, M.1    Yao, J.2
  • 13
    • 0035416447 scopus 로고    scopus 로고
    • Using rough sets with heuristics for feature selection
    • N. Zhong and J. Dong, Using rough sets with heuristics for feature selection, J. Intelligent Information Systems 16 (2001) 199-214.
    • (2001) J. Intelligent Information Systems , vol.16 , pp. 199-214
    • Zhong, N.1    Dong, J.2
  • 14
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife, and cross-validation
    • B. Efron and G. Gong, A leisurely look at the bootstrap, the jackknife, and cross-validation, The American Statistician 37 (1983) 36-48.
    • (1983) The American Statistician , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 15
    • 0029721663 scopus 로고    scopus 로고
    • Rough sets based data analysis in goal oriented software measurement
    • March
    • G. Ruhe, Rough sets based data analysis in goal oriented software measurement, in Proc. Third IEEE Symp. on Software Metrics, March 1996, pp. 10-19.
    • (1996) Proc. Third IEEE Symp. on Software Metrics , pp. 10-19
    • Ruhe, G.1
  • 17
    • 0035481267 scopus 로고    scopus 로고
    • Software cost estimation with incomplete data
    • K. Strike et al., Software cost estimation with incomplete data, IEEE Trans. on Software Engineering 27 (2001) 890-908.
    • (2001) IEEE Trans. on Software Engineering , vol.27 , pp. 890-908
    • Strike, K.1
  • 19
    • 0035506257 scopus 로고    scopus 로고
    • Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods
    • I. Myrtveit, E. Stensrud, and U. H. Olsson, Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods, IEEE Trans. on Software Engineering 27 (2001) 999-1013.
    • (2001) IEEE Trans. on Software Engineering , vol.27 , pp. 999-1013
    • Myrtveit, I.1    Stensrud, E.2    Olsson, U.H.3
  • 22
    • 34247326538 scopus 로고    scopus 로고
    • J. Li and G. Ruhe, A comparative study of attribute weighting heuristics for effort estimation by analogy, in Proc. ACM/IEEE Int. Symp. on Empirical Software Engineering (ISESE′06), Brazil, September 2006.
    • J. Li and G. Ruhe, A comparative study of attribute weighting heuristics for effort estimation by analogy, in Proc. ACM/IEEE Int. Symp. on Empirical Software Engineering (ISESE′06), Brazil, September 2006.
  • 25
    • 0023349750 scopus 로고
    • An empirical validation of software cost estimation models
    • C. F. Kemerer, An empirical validation of software cost estimation models, Commun. ACM 30 (1987) 436-445.
    • (1987) Commun. ACM , vol.30 , pp. 436-445
    • Kemerer, C.F.1
  • 28
    • 0036567302 scopus 로고    scopus 로고
    • Learning rules from incomplete training examples by rough sets
    • T. Hong, L. Tseng, and S.-L. Wang, Learning rules from incomplete training examples by rough sets, Expert Systems with Applications 22 (2002) 285-293.
    • (2002) Expert Systems with Applications , vol.22 , pp. 285-293
    • Hong, T.1    Tseng, L.2    Wang, S.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.