메뉴 건너뛰기




Volumn 55, Issue 9, 2004, Pages 976-987

An extended study of the K-means algorithm for data clustering and its applications

Author keywords

Computational analysis; Data clustering; Heuristics; Marketing research

Indexed keywords

ALGORITHMS; DATA REDUCTION; HEURISTIC METHODS; INDUSTRIAL ECONOMICS; MANAGEMENT SCIENCE; MARKETING;

EID: 4344675398     PISSN: 01605682     EISSN: None     Source Type: Journal    
DOI: 10.1057/palgrave.jors.2601732     Document Type: Review
Times cited : (19)

References (46)
  • 1
    • 0003178524 scopus 로고
    • A new approach to market segmentation
    • Green PE (1971). A new approach to market segmentation. Business Horizons 20: 61-73.
    • (1971) Business Horizons , vol.20 , pp. 61-73
    • Green, P.E.1
  • 2
    • 0001269514 scopus 로고
    • Issues and advances in segmentation research
    • Wind Y (1978). Issues and advances in segmentation research. J Marketing Res 15(3): 317-337.
    • (1978) J Marketing Res , vol.15 , Issue.3 , pp. 317-337
    • Wind, Y.1
  • 4
    • 0030189865 scopus 로고    scopus 로고
    • In search of optimal clusters using genetic algorithms
    • Murthy CA and Chowdhury N (1996). In search of optimal clusters using genetic algorithms. Pattern Recognition Lett 17: 825-832.
    • (1996) Pattern Recognition Lett , vol.17 , pp. 825-832
    • Murthy, C.A.1    Chowdhury, N.2
  • 5
    • 0030303747 scopus 로고    scopus 로고
    • New methods for the initialization of clusters
    • Al-Daoud MB and Roberts SA (1996). New methods for the initialization of clusters. Pattern Recognition Lett 17: 451-455.
    • (1996) Pattern Recognition Lett , vol.17 , pp. 451-455
    • Al-Daoud, M.B.1    Roberts, S.A.2
  • 6
    • 0029415780 scopus 로고
    • A conceptual version of the K-means algorithm
    • Ralambondrainy H (1995). A conceptual version of the K-means algorithm. Pattern Recognition Lett 16: 1147-1157.
    • (1995) Pattern Recognition Lett , vol.16 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 7
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the K-means algorithm for clustering large datasets with categorical values
    • Huang Z (1998). Extensions to the K-means algorithm for clustering large datasets with categorical values. Data Min Knowl Disc 2(3): 283-304.
    • (1998) Data Min Knowl Disc , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 8
    • 0000710590 scopus 로고
    • A preliminary study of optimal variable weighting in K-means clustering
    • Green PE, Carmone Jr FJ and Kim J (1990). A preliminary study of optimal variable weighting in K-means clustering. J Classification 1: 271-285.
    • (1990) J Classification , vol.1 , pp. 271-285
    • Green, P.E.1    Carmone Jr., F.J.2    Kim, J.3
  • 9
    • 0034314441 scopus 로고    scopus 로고
    • Comments on algorithm for vector quantizer design
    • Paliwal KK and Ramasubramanian V (2000). Comments on algorithm for vector quantizer design. IEEE Trans Image Process 9(11): 1964-1967.
    • (2000) IEEE Trans Image Process , vol.9 , Issue.11 , pp. 1964-1967
    • Paliwal, K.K.1    Ramasubramanian, V.2
  • 10
    • 0033229533 scopus 로고    scopus 로고
    • HINoV: A new model to improve market segment definition by identifying noisy variables
    • Carmone Jr FJ, Kara A and Maxwell S (1999). HINoV: a new model to improve market segment definition by identifying noisy variables. J Marketing Res 36(3): 501-509.
    • (1999) J Marketing Res , vol.36 , Issue.3 , pp. 501-509
    • Carmone Jr., F.J.1    Kara, A.2    Maxwell, S.3
  • 11
    • 1542532405 scopus 로고    scopus 로고
    • Robustness properties of K Means and trimmed K Means
    • Garcia-Escudero LA and Gordaliza A (1999). Robustness properties of K Means and trimmed K Means. J Am Stat Assoc 94(447): 956-969.
    • (1999) J Am Stat Assoc , vol.94 , Issue.447 , pp. 956-969
    • Garcia-Escudero, L.A.1    Gordaliza, A.2
  • 12
    • 0033116873 scopus 로고    scopus 로고
    • Comparing performance of feed-forward neural nets and K-means for cluster-based market segmentation
    • Hruschka H and Natter M (1999). Comparing performance of feed-forward neural nets and K-means for cluster-based market segmentation. Ear J Opl Res 114(2): 346-353.
    • (1999) Ear J Opl Res , vol.114 , Issue.2 , pp. 346-353
    • Hruschka, H.1    Natter, M.2
  • 13
    • 0038929394 scopus 로고    scopus 로고
    • Automatic clustering of business processes in business systems Planning
    • Lee H-S (1999). Automatic clustering of business processes in business systems Planning. Ear J Opl Res 114(2): 354-362.
    • (1999) Ear J Opl Res , vol.114 , Issue.2 , pp. 354-362
    • Lee, H.-S.1
  • 14
    • 21844481226 scopus 로고
    • Alternative approaches to cluster-based market segmentation
    • Green PE and Krieger AM (1995). Alternative approaches to cluster-based market segmentation. J Marketing Res Soc 3: 221-239.
    • (1995) J Marketing Res Soc , vol.3 , pp. 221-239
    • Green, P.E.1    Krieger, A.M.2
  • 15
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a dataset
    • Milligan GW and Cooper MC (1985). An examination of procedures for determining the number of clusters in a dataset. Psychometrika 50(2): 159-179.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 16
    • 0030572650 scopus 로고    scopus 로고
    • Comparative performance of the FSCL neural net and K-means algorithm for market segmentation
    • Balakrishnan PV, Cooper MC, Jacob VS and Lewis PA (1996). Comparative performance of the FSCL neural net and K-means algorithm for market segmentation. Eur J Opl Res 93(2): 346-357.
    • (1996) Eur J Opl Res , vol.93 , Issue.2 , pp. 346-357
    • Balakrishnan, P.V.1    Cooper, M.C.2    Jacob, V.S.3    Lewis, P.A.4
  • 17
    • 0030509643 scopus 로고    scopus 로고
    • K-means clustering methods with influence detection
    • Cheng R and Milligan GW (1996). K-means clustering methods with influence detection. Edu Psvchol Measure 56(5): 833-838.
    • (1996) Edu Psvchol Measure , vol.56 , Issue.5 , pp. 833-838
    • Cheng, R.1    Milligan, G.W.2
  • 19
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithm
    • Milligan GW (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithm. Psychometrika 45: 325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 20
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the K-means algorithm
    • Pena JM, Lozano JA and Larranaga P (1999). An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recognition Lett 20: 1027-1040.
    • (1999) Pattern Recognition Lett , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 21
    • 0033096833 scopus 로고    scopus 로고
    • An enhanced sequential fuzzy clustering algorithm
    • Zheng GL and Billings SA (1999). An enhanced sequential fuzzy clustering algorithm. Int J Syst Sci 30(3): 295-307.
    • (1999) Int J Syst Sci , vol.30 , Issue.3 , pp. 295-307
    • Zheng, G.L.1    Billings, S.A.2
  • 23
    • 0033731027 scopus 로고    scopus 로고
    • Centroid neural network for unsupervised competitive learning
    • Park DC (2000). Centroid neural network for unsupervised competitive learning. IEEE Trans Neural Networks 11(2): 520-528.
    • (2000) IEEE Trans Neural Networks , vol.11 , Issue.2 , pp. 520-528
    • Park, D.C.1
  • 24
    • 0021202650 scopus 로고
    • K-means type algorithms: A generalized convergence theorem and characterization of local optimality
    • Selim SZ and Ismail MA (1984). K-means type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans Pattern Anal Mach Intell 6(1): 81-87.
    • (1984) IEEE Trans Pattern Anal Mach Intell , vol.6 , Issue.1 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.A.2
  • 25
    • 0037375030 scopus 로고    scopus 로고
    • Minimization subproblems and heuristics for an applied clustering problem
    • Birgin EG, Martinez JM and Ronconi DP (2003). Minimization subproblems and heuristics for an applied clustering problem. Eur J Opl Res 146: 19-34.
    • (2003) Eur J Opl Res , vol.146 , pp. 19-34
    • Birgin, E.G.1    Martinez, J.M.2    Ronconi, D.P.3
  • 27
    • 0036647190 scopus 로고    scopus 로고
    • An efficient K-means clustering algorithm: Analysis and implementation
    • Kanungo T et al (2002). An efficient K-means clustering algorithm: Analysis and implementation. IEEE Trans Puttern Anal Mach Intell 24(7): 881-892.
    • (2002) IEEE Trans Puttern Anal Mach Intell , vol.24 , Issue.7 , pp. 881-892
    • Kanungo, T.1
  • 28
    • 0035365076 scopus 로고    scopus 로고
    • A modified version of the K-means algorithm with a distance based on cluster symmetry
    • Su M-C and Chou C-H (2001). A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans Pattern Anal Mach Intell 23(6): 674-680.
    • (2001) IEEE Trans Pattern Anal Mach Intell , vol.23 , Issue.6 , pp. 674-680
    • Su, M.-C.1    Chou, C.-H.2
  • 30
    • 0036722310 scopus 로고    scopus 로고
    • Integration of self-organizing feature map and K-means algorithm for market segmentation
    • Kuo RJ, Ho LM and Hu CM (2002). Integration of self-organizing feature map and K-means algorithm for market segmentation. Comput Oper Res 29: 1475-1493.
    • (2002) Comput Oper Res , vol.29 , pp. 1475-1493
    • Kuo, R.J.1    Ho, L.M.2    Hu, C.M.3
  • 31
    • 0036721824 scopus 로고    scopus 로고
    • K-means iterative fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    • Clausi (2002). K-means iterative fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recognition 35: 1959-1972.
    • (2002) Pattern Recognition , vol.35 , pp. 1959-1972
    • Clausi1
  • 32
    • 0036849876 scopus 로고    scopus 로고
    • A mathematical programming approach to optimize insurance premium pricing with a data mining framework
    • Yeo AC, Smith KA, Willis RJ and Brooks M (2002). A mathematical programming approach to optimize insurance premium pricing with a data mining framework. J Opl Res Soc 53(11): 1197-1203.
    • (2002) J Opl Res Soc , vol.53 , Issue.11 , pp. 1197-1203
    • Yeo, A.C.1    Smith, K.A.2    Willis, R.J.3    Brooks, M.4
  • 33
    • 0036479162 scopus 로고    scopus 로고
    • A simulated annealing heuristic for a bicriterion partitioning problem in market segmentation
    • Brusco MJ, Cradit JD and Stahl S (2002). A simulated annealing heuristic for a bicriterion partitioning problem in market segmentation. J Marketing Res 34: 99-109.
    • (2002) J Marketing Res , vol.34 , pp. 99-109
    • Brusco, M.J.1    Cradit, J.D.2    Stahl, S.3
  • 34
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • Forgy E (1965). Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21: 768.
    • (1965) Biometrics , vol.21 , pp. 768
    • Forgy, E.1
  • 35
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California, Berkeley, USA
    • MacQueen J (1967). Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematics, Statistics and Probability, University of California, Berkeley, USA. Volume 1, pp 281-297.
    • (1967) Proceedings of 5th Berkeley Symposium on Mathematics, Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 36
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley J (1975). Multidimensional binary search trees used for associative searching. Comm ACM 18: 509-517.
    • (1975) Comm ACM , vol.18 , pp. 509-517
    • Bentley, J.1
  • 37
    • 0030432718 scopus 로고    scopus 로고
    • An intercomparison of computer-assisted circulation classification methods
    • Huth R (1996). An intercomparison of computer-assisted circulation classification methods. Int J Climatol 16: 893-922.
    • (1996) Int J Climatol , vol.16 , pp. 893-922
    • Huth, R.1
  • 38
    • 0000470917 scopus 로고
    • Cluster analysis in marketing research: Review and suggestions for application
    • Punj G and Stewart DW (1983). Cluster analysis in marketing research: review and suggestions for application. J Marketing Res 20: 134-148.
    • (1983) J Marketing Res , vol.20 , pp. 134-148
    • Punj, G.1    Stewart, D.W.2
  • 40
    • 0018918171 scopus 로고
    • An algorithm for vector quantizer design
    • Linde Y, Buzo A and Gary R (1980). An algorithm for vector quantizer design. IEEE Trans Commun 28(1): 84-95.
    • (1980) IEEE Trans Commun , vol.28 , Issue.1 , pp. 84-95
    • Linde, Y.1    Buzo, A.2    Gary, R.3
  • 43
    • 0028516390 scopus 로고
    • A new initialization technique for generalized Lioyd iteration
    • Katsavounidis I, Kuo C and Zhang Z (1994). A new initialization technique for generalized Lioyd iteration. IEEE Signal Process Lett 1(10): 144-146.
    • (1994) IEEE Signal Process Lett , vol.1 , Issue.10 , pp. 144-146
    • Katsavounidis, I.1    Kuo, C.2    Zhang, Z.3
  • 44
    • 84957012677 scopus 로고    scopus 로고
    • Finding consistent clusters in data partitions
    • Kittler J and Roli F (eds). Springer-Verlag: Berlin, Heidelberg
    • Fred A (2001). Finding consistent clusters in data partitions, In: Kittler J and Roli F (eds). MCS 2001, LNCS. volume 2096. pp 309-318. Springer-Verlag: Berlin, Heidelberg.
    • (2001) MCS 2001, LNCS , vol.2096 , pp. 309-318
    • Fred, A.1
  • 46
    • 0033277415 scopus 로고    scopus 로고
    • Special section: Data mining
    • Chung HM and Gary P (1999). Special section: data mining. J Manage Inf Syst 16(1): 11-16.
    • (1999) J Manage Inf Syst , vol.16 , Issue.1 , pp. 11-16
    • Chung, H.M.1    Gary, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.