메뉴 건너뛰기




Volumn 40, Issue 3, 2007, Pages 796-806

Information cut for clustering using a gradient descent approach

Author keywords

Annealing; Clustering; Gradient descent optimization; Graph theoretic cut; Information theory; Parzen window density estimation

Indexed keywords

ALGORITHMS; ANNEALING; COMPUTATIONAL COMPLEXITY; DISTANCE MEASUREMENT; GRADIENT METHODS; IMAGE SEGMENTATION; INFORMATION THEORY; PROBABILITY DENSITY FUNCTION;

EID: 33750527085     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2006.06.028     Document Type: Article
Times cited : (30)

References (35)
  • 4
    • 0027697605 scopus 로고
    • An optimal graph theoretic approach to data clustering: theory and its applications to image segmentation
    • Wu Z., and Leahy R. An optimal graph theoretic approach to data clustering: theory and its applications to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15 11 (1993) 1101-1113
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell. , vol.15 , Issue.11 , pp. 1101-1113
    • Wu, Z.1    Leahy, R.2
  • 7
    • 0035481858 scopus 로고    scopus 로고
    • Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization
    • Gdalyahu Y., Weinshall D., and Werman M. Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans. Pattern Anal. Mach. Intell. 23 10 (2001) 1053-1074
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.10 , pp. 1053-1074
    • Gdalyahu, Y.1    Weinshall, D.2    Werman, M.3
  • 14
    • 0000963696 scopus 로고
    • Feature grouping by relocalisation of eigenvectors of the proximity matrix
    • Oxford, UK
    • Scott G., and Longuet-Higgins H. Feature grouping by relocalisation of eigenvectors of the proximity matrix. Proceedings of British Machine Vision Conference. Oxford, UK (September 24-27, 1990) 103-108
    • (1990) Proceedings of British Machine Vision Conference , pp. 103-108
    • Scott, G.1    Longuet-Higgins, H.2
  • 15
    • 33750503584 scopus 로고    scopus 로고
    • D.J. Higham, M. Kibble, A unified view of spectral clustering, Technical Report 2, Department of Mathematics, University of Strathclyde, January 2004.
  • 19
  • 22
    • 84898956621 scopus 로고    scopus 로고
    • Data clustering by Markovian relaxation and the information bottleneck method
    • MIT Press, Cambridge
    • Tishby N., and Slonim N. Data clustering by Markovian relaxation and the information bottleneck method. Advances in Neural Information Processing Systems vol. 13 (2001), MIT Press, Cambridge 640-646
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 640-646
    • Tishby, N.1    Slonim, N.2
  • 24
    • 33646557981 scopus 로고    scopus 로고
    • R. Jenssen, D. Erdogmus, K.E. Hild, J.C. Principe, T. Eltoft, Optimizing the Cauchy-Schwarz PDF distance for information theoretic, non-parametric clustering, in: Proceedings of International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, St. Augustine, USA, November 9-11, 2005, pp. 34-45.
  • 25
    • 0000986833 scopus 로고    scopus 로고
    • Information theoretic learning
    • Haykin S. (Ed), Wiley, New York (Chapter 7)
    • Principe J., Xu D., and Fisher J. Information theoretic learning. In: Haykin S. (Ed). Unsupervised Adaptive Filtering vol. I (2000), Wiley, New York (Chapter 7)
    • (2000) Unsupervised Adaptive Filtering , vol.I
    • Principe, J.1    Xu, D.2    Fisher, J.3
  • 26
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and the mode
    • Parzen E. On the estimation of a probability density function and the mode. Ann. Math. Statist. 32 (1962) 1065-1076
    • (1962) Ann. Math. Statist. , vol.32 , pp. 1065-1076
    • Parzen, E.1
  • 31
    • 0018918224 scopus 로고
    • A convergence theorem for the fuzzy isodata clustering algorithms
    • Bezdek J.C. A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans. Pattern Anal. Mach. Learn. 2 1 (1980) 1-8
    • (1980) IEEE Trans. Pattern Anal. Mach. Learn. , vol.2 , Issue.1 , pp. 1-8
    • Bezdek, J.C.1
  • 32
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press, Berkeley
    • MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of Berkeley Symposium on Mathematical Statistics and Probability (1967), University of California Press, Berkeley 281-297
    • (1967) Proceedings of Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.1
  • 33
    • 33750510246 scopus 로고    scopus 로고
    • R. Murphy, D. Ada, UCI repository of machine learning databases, Technical Report, Department of Computer Science, University of California, Irvine, 1994.
  • 34
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using Gabor filters
    • Jain A.K., and Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24 12 (1991) 1167-1186
    • (1991) Pattern Recognition , vol.24 , Issue.12 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 35
    • 0442312138 scopus 로고    scopus 로고
    • The fast Gauss transform for efficient kernel density evaluation with applications in computer vision
    • Elgammal A., Duraiswami R., and Davis L. The fast Gauss transform for efficient kernel density evaluation with applications in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1499-1504
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1499-1504
    • Elgammal, A.1    Duraiswami, R.2    Davis, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.