-
2
-
-
0029781508
-
-
C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607-609.
-
(1996)
Nature
, vol.382
, pp. 607-609
-
-
Mirkin, C.A.1
Letsinger, R.L.2
Mucic, R.C.3
Storhoff, J.J.4
-
4
-
-
54949153370
-
-
C. Lin, Y. Ke, Y. Liu, M. Mertig, J. Gu, H. Yan, Angew. Chem. 2007, 119, 6201-6204
-
(2007)
Angew. Chem
, vol.119
, pp. 6201-6204
-
-
Lin, C.1
Ke, Y.2
Liu, Y.3
Mertig, M.4
Gu, J.5
Yan, H.6
-
5
-
-
34548073828
-
-
C. Lin, Y. Ke, Y. Liu, M. Mertig, J. Gu, H. Yan, Angew. Chem. Int. Ed. 2007, 46, 6089-6092.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 6089-6092
-
-
Lin, C.1
Ke, Y.2
Liu, Y.3
Mertig, M.4
Gu, J.5
Yan, H.6
-
7
-
-
0032490948
-
-
E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539-544.
-
(1998)
Nature
, vol.394
, pp. 539-544
-
-
Winfree, E.1
Liu, F.2
Wenzler, L.A.3
Seeman, N.C.4
-
8
-
-
1342325559
-
-
W. M. Shih, J. D. Quispe, G. F. Joyce, Nature 2004, 427, 618-621.
-
(2004)
Nature
, vol.427
, pp. 618-621
-
-
Shih, W.M.1
Quispe, J.D.2
Joyce, G.F.3
-
9
-
-
0034632783
-
-
a) B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel, J. L. Neumann, Nature 2000, 406, 605-608
-
(2000)
Nature
, vol.406
, pp. 605-608
-
-
Yurke, B.1
Turberfield, A.J.2
Mills, A.P.3
Simmel, F.C.4
Neumann, J.L.5
-
11
-
-
0035795427
-
-
C. M. Niemeyer, M. Adler, S. Lenhert, S. Gao, H. Fuchs, L. Chi, ChemBioChem 2001, 2, 260-264.
-
(2001)
ChemBioChem
, vol.2
, pp. 260-264
-
-
Niemeyer, C.M.1
Adler, M.2
Lenhert, S.3
Gao, S.4
Fuchs, H.5
Chi, L.6
-
12
-
-
0033552937
-
-
C. Mao, W. Sun, Z. Shen, N. C. Seeman, Nature 1999, 397, 144-146.
-
(1999)
Nature
, vol.397
, pp. 144-146
-
-
Mao, C.1
Sun, W.2
Shen, Z.3
Seeman, N.C.4
-
16
-
-
0000438394
-
-
H. Asanuma, T. Ito, T. Yoshida, X. G. Liang, M. Komiyama, Angew. Chem. 1999, 111, 2547-2549
-
(1999)
Angew. Chem
, vol.111
, pp. 2547-2549
-
-
Asanuma, H.1
Ito, T.2
Yoshida, T.3
Liang, X.G.4
Komiyama, M.5
-
17
-
-
0033549733
-
-
H. Asanuma, T. Ito, T. Yoshida, X. G. Liang, M. Komiyama, Angew. Chem. Int. Ed. 1999, 38, 2393-2395.
-
(1999)
Angew. Chem. Int. Ed
, vol.38
, pp. 2393-2395
-
-
Asanuma, H.1
Ito, T.2
Yoshida, T.3
Liang, X.G.4
Komiyama, M.5
-
18
-
-
0000314510
-
-
H. Asanuma, X. G. Liang, T. Yoshida, M. Komiyama, Angew. Chem. 2000, 112, 1372-1374
-
(2000)
Angew. Chem
, vol.112
, pp. 1372-1374
-
-
Asanuma, H.1
Liang, X.G.2
Yoshida, T.3
Komiyama, M.4
-
19
-
-
0034599413
-
-
H. Asanuma, X. G. Liang, T. Yoshida, M. Komiyama, Angew. Chem. Int. Ed. 2000, 39, 1316-1318.
-
(2000)
Angew. Chem. Int. Ed
, vol.39
, pp. 1316-1318
-
-
Asanuma, H.1
Liang, X.G.2
Yoshida, T.3
Komiyama, M.4
-
20
-
-
85044700853
-
-
H. Asanuma, X. Liang, T. Yoshida, M. Komiyama, ChemBioChem 2001, 2, 39-44.
-
(2001)
ChemBioChem
, vol.2
, pp. 39-44
-
-
Asanuma, H.1
Liang, X.2
Yoshida, T.3
Komiyama, M.4
-
21
-
-
0012040763
-
-
H. Asanuma, T. Takarada, T. Yoshida, X. G. Liang, M. Komiyama, Angew. Chem. 2001, 113, 2743-2745
-
(2001)
Angew. Chem
, vol.113
, pp. 2743-2745
-
-
Asanuma, H.1
Takarada, T.2
Yoshida, T.3
Liang, X.G.4
Komiyama, M.5
-
22
-
-
0035898477
-
-
H. Asanuma, T. Takarada, T. Yoshida, X. G. Liang, M. Komiyama, Angew. Chem. Int. Ed. 2001, 40, 2671-2673.
-
(2001)
Angew. Chem. Int. Ed
, vol.40
, pp. 2671-2673
-
-
Asanuma, H.1
Takarada, T.2
Yoshida, T.3
Liang, X.G.4
Komiyama, M.5
-
23
-
-
0037028983
-
-
X. G. Liang, H. Asanuma, M. Komiyama, J. Am. Chem. Soc. 2002, 124, 1877-1883.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 1877-1883
-
-
Liang, X.G.1
Asanuma, H.2
Komiyama, M.3
-
24
-
-
0347064289
-
-
a) X. G. Liang, H. Asanuma, H. Kashida, A. Takasu, T. Sakamoto, G. Kawai, M. Komiyama, J. Am. Chem. Soc. 2003, 125, 16408-16415
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 16408-16415
-
-
Liang, X.G.1
Asanuma, H.2
Kashida, H.3
Takasu, A.4
Sakamoto, T.5
Kawai, G.6
Komiyama, M.7
-
25
-
-
39049174378
-
-
b) H. Asanuma, D. Matsunaga, M. Komiyama, Nucleic Acids Symp. Ser. (Oxf.) 2005, 49, 35-36.
-
(2005)
Nucleic Acids Symp. Ser. (Oxf.)
, vol.49
, pp. 35-36
-
-
Asanuma, H.1
Matsunaga, D.2
Komiyama, M.3
-
26
-
-
0001508935
-
-
A. Yamazawa, X. G. Liang, T. Yoshida, H. Asanuma, M. Komiyama, Angew. Chem. 2000, 112, 2446-2447
-
(2000)
Angew. Chem
, vol.112
, pp. 2446-2447
-
-
Yamazawa, A.1
Liang, X.G.2
Yoshida, T.3
Asanuma, H.4
Komiyama, M.5
-
27
-
-
0034600770
-
-
A. Yamazawa, X. G. Liang, T. Yoshida, H. Asanuma, M. Komiyama, Angew. Chem. Int. Ed. 2000, 39, 2356-2357.
-
(2000)
Angew. Chem. Int. Ed
, vol.39
, pp. 2356-2357
-
-
Yamazawa, A.1
Liang, X.G.2
Yoshida, T.3
Asanuma, H.4
Komiyama, M.5
-
28
-
-
4544379091
-
-
D. Matsunaga, H. Asanuma, M. Komiyama, J. Am. Chem. Soc. 2004, 126, 11452-11453.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 11452-11453
-
-
Matsunaga, D.1
Asanuma, H.2
Komiyama, M.3
-
29
-
-
31444454427
-
-
M. Liu, H. Asanuma, M. Komiyama, J. Am. Chem. Soc. 2006, 128, 1009-1015.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1009-1015
-
-
Liu, M.1
Asanuma, H.2
Komiyama, M.3
-
30
-
-
34347230540
-
-
H. Asanuma, X. G. Liang, H. Nishioka, D. Matsunaga, M. Liu, M. Komiyama, Nat. Protocols 2007, 2, 203-212.
-
(2007)
Nat. Protocols
, vol.2
, pp. 203-212
-
-
Asanuma, H.1
Liang, X.G.2
Nishioka, H.3
Matsunaga, D.4
Liu, M.5
Komiyama, M.6
-
31
-
-
33745741112
-
-
11th International Workshop on DNA Computing, DNA11, London, ON (Canada), June 6-9, 2005: K. Takahashi, S. Yaegashi, H. Asanuma, H. Hagiya in DNA Computing (Lecture Notes in Computer Science), 3892, Springer, Berlin, 2006, pp. 336-346.
-
11th International Workshop on DNA Computing, DNA11, London, ON (Canada), June 6-9, 2005: K. Takahashi, S. Yaegashi, H. Asanuma, H. Hagiya in DNA Computing (Lecture Notes in Computer Science), Vol. 3892, Springer, Berlin, 2006, pp. 336-346.
-
-
-
-
32
-
-
54949097256
-
-
The FRET efficiency in the completely open state (without F strand) at 50°C would be ∼0.25 as estimated from the averaged distance between the TET and TAMRA chromophores, reported to be 6 nm in ref. [8a]. Based on this value, the FRET efficiency in the closed state could be evaluated as 0.79.
-
The FRET efficiency in the completely open state (without F strand) at 50°C would be ∼0.25 as estimated from the averaged distance between the TET and TAMRA chromophores, reported to be 6 nm in ref. [8a]. Based on this value, the FRET efficiency in the closed state could be evaluated as 0.79.
-
-
-
-
33
-
-
54949151367
-
-
[8a] rather strong fluorescence remained even in the completely closed state at 20°C. In our case, the fluorescence intensity was around 60 AU at 20°C (data not shown). Therefore, we think that the residual fluorescence after closing the tweezers can be attributed mainly to the low FRET efficiency.
-
[8a] rather strong fluorescence remained even in the completely closed state at 20°C. In our case, the fluorescence intensity was around 60 AU at 20°C (data not shown). Therefore, we think that the residual fluorescence after closing the tweezers can be attributed mainly to the low FRET efficiency.
-
-
-
-
34
-
-
38949166715
-
-
In Figure 2, the fluorescence spectrum after UV irradiation, ·-·) does not completely overlap that of the completely open state, due to the incomplete dissociation of cis-F12X. We recently synthesized a modified azobenzene which has much more efficient photoresponsiveness: H. Nishioka, X. G. Liang, H. Kashida, H. Asanuma, Chem. Commun. 2007, 4354-4356. With this new modified azobenzene, complete dissociation can be expected
-
12X. We recently synthesized a modified azobenzene which has much more efficient photoresponsiveness: H. Nishioka, X. G. Liang, H. Kashida, H. Asanuma, Chem. Commun. 2007, 4354-4356. With this new modified azobenzene, complete dissociation can be expected.
-
-
-
-
35
-
-
54949135127
-
-
Although the backbone of strand F12X is much longer than that of the complementary parts due to the additional incorporation of azobenzene moieties (X residues, Figure 1, both the stability of the duplex formed and the specificity for recognizing the complementary sequence are similar to (or slightly lower than) the native strand Fn in the case of trans-F12X: Tm of A/ (B,C) and Fn was 63.0°C, whereas Tm, 59.2°C for trans-F12X (see Figure S2, When fewer azobenzene residues (four or eight X residues) were used, photoregulation was also attained but with lower efficiency
-
12X (see Figure S2). When fewer azobenzene residues (four or eight X residues) were used, photoregulation was also attained but with lower efficiency.
-
-
-
-
36
-
-
54949141026
-
-
No clear resonant intramolecular energy transfer from TET to trans- or cis-azobenzene moieties was observed.
-
No clear resonant intramolecular energy transfer from TET to trans- or cis-azobenzene moieties was observed.
-
-
-
-
37
-
-
54949148639
-
-
If the temperature is too high, the duplex dissociates in both cases of trans and cis configuration; if the temperature is too low, the duplex is formed in both cases.
-
If the temperature is too high, the duplex dissociates in both cases of trans and cis configuration; if the temperature is too low, the duplex is formed in both cases.
-
-
-
|