메뉴 건너뛰기




Volumn 41, Issue 12, 2008, Pages 1960-1964

Feature selection for high-dimensional data in astronomy

Author keywords

Astronomical catalogs; Feature selection; Method: data analysis; Sky survey

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; FEATURE EXTRACTION; INFORMATION RETRIEVAL; SPACE RESEARCH;

EID: 43149098046     PISSN: 02731177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asr.2007.08.033     Document Type: Article
Times cited : (32)

References (18)
  • 1
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim T.G. Dietterich Learning boolean concepts in the presence of many irrelevant features Artificial Intelligence 69 1–2 1994 279 305
    • (1994) Artificial Intelligence , vol.69 , Issue.1–2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 2
    • 85119722781 scopus 로고    scopus 로고
    • Dash, M., Choi, K., Scheuermann, P., Liu, H., Feature selection for clustering C a filter solution, in: Proceedings of the Second International Conference on Data Mining, pp. 115–122, 2002.
  • 4
    • 33746075538 scopus 로고    scopus 로고
    • A principal component analysis approach to the star formation history of elliptical galaxies in compact groups
    • I. Ferreras A. Pasquali R.R. de Carvalho A principal component analysis approach to the star formation history of elliptical galaxies in compact groups MNRAS 370 2006 828 836
    • (2006) MNRAS , vol.370 , pp. 828-836
    • Ferreras, I.1    Pasquali, A.2    de Carvalho, R.R.3
  • 6
    • 85119727661 scopus 로고    scopus 로고
    • Kira, K., Rendell, L.A. A practical approach to feature selection, in: Sleeman, D., Edwards, P. (Eds.), Machine Learning: Proceedings of International Conference (ICML92). Morgan Kaufmann, pp. 249–256, 1992.
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1997 273 324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 8
    • 0003507805 scopus 로고    scopus 로고
    • Feature Selection for Knowledge Discovery and Data Mining
    • H. Liu H. Motoda Feature Selection for Knowledge Discovery and Data Mining 1998 Kluwer Boston
    • (1998)
    • Liu, H.1    Motoda, H.2
  • 9
    • 33144481453 scopus 로고    scopus 로고
    • Ensemble learning for independent component analysis of normal galaxy spectra
    • H. Lu H. Zhou J. Wang Ensemble learning for independent component analysis of normal galaxy spectra AJ 131 2 2006 790 805
    • (2006) AJ , vol.131 , Issue.2 , pp. 790-805
    • Lu, H.1    Zhou, H.2    Wang, J.3
  • 10
    • 0003971926 scopus 로고    scopus 로고
    • Subset Selection in Regression
    • A. Miller Subset Selection in Regression second ed. 2002 Chapman & Hall/CRC
    • (2002)
    • Miller, A.1
  • 11
    • 0004255908 scopus 로고    scopus 로고
    • Machine Learning
    • T.M. Mitchell Machine Learning 1997 McGraw-Hill International Editions
    • (1997)
    • Mitchell, T.M.1
  • 12
    • 0003500248 scopus 로고
    • C4.5: Programs for Machine Learning
    • J.R. Quinlan C4.5: Programs for Machine Learning 1993 Morgan Kaufmann
    • (1993)
    • Quinlan, J.R.1
  • 13
    • 85119757780 scopus 로고    scopus 로고
    • Association measures in the induction graphs: a statistic approach of the generality-precision referring
    • R. Rakotomalala D. Zighed Association measures in the induction graphs: a statistic approach of the generality-precision referring Proceedings of AIDRI’97 1997 131 134
    • (1997) Proceedings of AIDRI’97 , pp. 131-134
    • Rakotomalala, R.1    Zighed, D.2
  • 14
    • 34249938937 scopus 로고    scopus 로고
    • Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra
    • P. Re Fiorentin C.A.L. Bailer-Jones Y.S. Lee Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra A&A 467 3 2007 1373 1387
    • (2007) A&A , vol.467 , Issue.3 , pp. 1373-1387
    • Re Fiorentin, P.1    Bailer-Jones, C.A.L.2    Lee, Y.S.3
  • 15
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Šikonja I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Machine Learning Journal 53 2003 23 69
    • (2003) Machine Learning Journal , vol.53 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 16
    • 85119769068 scopus 로고
    • Probability, Analysis of Data and Statistics
    • G. Saporta Probability, Analysis of Data and Statistics 1990 Technip
    • (1990)
    • Saporta, G.1
  • 17
    • 85119739983 scopus 로고    scopus 로고
    • Zhang, Y., Luo, A., Zhao, Y., An automated classification algorithm for multiwavelength data, in: Quinn, P., Bridger, A. (Eds.), Optimizing Scientific Return for Astronomy through Information Technologies. Proceedings of SPIE 5493, pp. 483–490, 2004.
  • 18
    • 3442891315 scopus 로고    scopus 로고
    • Automated clustering algorithms for classification of astronomical objects
    • Y. Zhang Y. Zhao Automated clustering algorithms for classification of astronomical objects A&A 422 2004 1113 1121
    • (2004) A&A , vol.422 , pp. 1113-1121
    • Zhang, Y.1    Zhao, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.