-
2
-
-
5344232579
-
-
JPAMA4 0022-3700 10.1088/0022-3700/15/8/012
-
T. P. Grozdanov and E. A. Solov'ev, J. Phys. B JPAMA4 0022-3700 10.1088/0022-3700/15/8/012 15, 1195 (1982)
-
(1982)
J. Phys. B
, vol.15
, pp. 1195
-
-
Grozdanov, T.P.1
Solov'Ev, E.A.2
-
5
-
-
0007715987
-
-
CHPLBC 0009-2614 10.1016/0009-2614(93)87188-9
-
P. Schmelcher and L. S. Cederbaum, Chem. Phys. Lett. CHPLBC 0009-2614 10.1016/0009-2614(93)87188-9 208, 548 (1993)
-
(1993)
Chem. Phys. Lett.
, vol.208
, pp. 548
-
-
Schmelcher, P.1
Cederbaum, L.S.2
-
6
-
-
5544272341
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.47.2634
-
P. Schmelcher and L. S. Cederbaum, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.47.2634 47, 2634 (1993)
-
(1993)
Phys. Rev. A
, vol.47
, pp. 2634
-
-
Schmelcher, P.1
Cederbaum, L.S.2
-
8
-
-
0028467846
-
-
JPAPEH 0953-4075 10.1088/0953-4075/27/13/013
-
J. Main and G. Wunner, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/27/ 13/013 27, 2835 (1994)
-
(1994)
J. Phys. B
, vol.27
, pp. 2835
-
-
Main, J.1
Wunner, G.2
-
9
-
-
0000104329
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.50.2467
-
R. C. Hilborn, L. R. Hunter, K. Johnson, S. K. Peck, A. Spencer, and J. Watson, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.50.2467 50, 2467 (1994)
-
(1994)
Phys. Rev. A
, vol.50
, pp. 2467
-
-
Hilborn, R.C.1
Hunter, L.R.2
Johnson, K.3
Peck, S.K.4
Spencer, A.5
Watson, J.6
-
10
-
-
21844525254
-
-
AJPIAS 0002-9505 10.1119/1.17962
-
R. C. Hilborn, Am. J. Phys. AJPIAS 0002-9505 10.1119/1.17962 63, 330 (1995)
-
(1995)
Am. J. Phys.
, vol.63
, pp. 330
-
-
Hilborn, R.C.1
-
12
-
-
0001587985
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.57.1149
-
J. Main, M. Schwacke, and G. Wunner, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.57.1149 57, 1149 (1998)
-
(1998)
Phys. Rev. A
, vol.57
, pp. 1149
-
-
Main, J.1
Schwacke, M.2
Wunner, G.3
-
13
-
-
0000077165
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.60.3833
-
C. Jaffé, D. Farrelly, and T. Uzer, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.60.3833 60, 3833 (1999)
-
(1999)
Phys. Rev. A
, vol.60
, pp. 3833
-
-
Jaffé, C.1
Farrelly, D.2
Uzer, T.3
-
15
-
-
20444373406
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.63.043409
-
D. M. Wang and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.63.043409 63, 043409 (2001)
-
(2001)
Phys. Rev. A
, vol.63
, pp. 043409
-
-
Wang, D.M.1
Delos, J.B.2
-
16
-
-
4243655582
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.67.063411
-
T. Bartsch, J. Main, and G. Wunner, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.67.063411 67, 063411 (2003)
-
(2003)
Phys. Rev. A
, vol.67
, pp. 063411
-
-
Bartsch, T.1
Main, J.2
Wunner, G.3
-
17
-
-
33846984982
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.023406
-
S. Gekle, J. Main, T. Bartsch, and T. Uzer, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.023406 75, 023406 (2007)
-
(2007)
Phys. Rev. A
, vol.75
, pp. 023406
-
-
Gekle, S.1
Main, J.2
Bartsch, T.3
Uzer, T.4
-
18
-
-
43049098248
-
-
and references that follow.
-
and references that follow.
-
-
-
-
19
-
-
34250908206
-
-
ZEPYAA 0044-3328 10.1007/BF01450175
-
W. Pauli, Z. Phys. ZEPYAA 0044-3328 10.1007/BF01450175 36, 336 (1926)
-
(1926)
Z. Phys.
, vol.36
, pp. 336
-
-
Pauli, W.1
-
21
-
-
0021389287
-
-
OPCOB8 0030-4018 10.1016/0030-4018(84)90260-8
-
F. Penent, D. Delande, F. Biraben, and J. C. Gay, Opt. Commun. OPCOB8 0030-4018 10.1016/0030-4018(84)90260-8 49, 184 (1984)
-
(1984)
Opt. Commun.
, vol.49
, pp. 184
-
-
Penent, F.1
Delande, D.2
Biraben, F.3
Gay, J.C.4
-
22
-
-
0000233143
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.37.4707
-
F. Penent, D. Delande, and J. C. Gay, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.37.4707 37, 4707 (1988)
-
(1988)
Phys. Rev. A
, vol.37
, pp. 4707
-
-
Penent, F.1
Delande, D.2
Gay, J.C.3
-
23
-
-
0000412462
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.62.2821
-
G. Wiebusch, J. Main, K. Krüger, H. Rottke, A. Holle, and K. H. Welge, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.62.2821 62, 2821 (1989)
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 2821
-
-
Wiebusch, G.1
Main, J.2
Krüger, K.3
Rottke, H.4
Holle, A.5
Welge, K.H.6
-
24
-
-
0001094187
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.44.1898
-
G. Raithel, M. Fauth, and H. Walther, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.44.1898 44, 1898 (1991)
-
(1991)
Phys. Rev. A
, vol.44
, pp. 1898
-
-
Raithel, G.1
Fauth, M.2
Walther, H.3
-
25
-
-
26544465780
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.49.1646
-
G. Raithel and H. Walther, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.49.1646 49, 1646 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 1646
-
-
Raithel, G.1
Walther, H.2
-
26
-
-
0000739702
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.57.2867
-
D. A. Sadovskií and B. I. Zhilinskií, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.57.2867 57, 2867 (1998)
-
(1998)
Phys. Rev. A
, vol.57
, pp. 2867
-
-
Sadovskií, D.A.1
Zhilinskií, B.I.2
-
27
-
-
0035616475
-
-
FNDPA4 0015-9018 10.1023/A:1017542620404
-
N. Berglund and T. Uzer, Found. Phys. FNDPA4 0015-9018 10.1023/A:1017542620404 31, 283 (2001).
-
(2001)
Found. Phys.
, vol.31
, pp. 283
-
-
Berglund, N.1
Uzer, T.2
-
28
-
-
0001544630
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.58.3896
-
P. Bellomo, C. R. Stroud, D. Farrelly, and T. Uzer, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.58.3896 58, 3896 (1998).
-
(1998)
Phys. Rev. A
, vol.58
, pp. 3896
-
-
Bellomo, P.1
Stroud, C.R.2
Farrelly, D.3
Uzer, T.4
-
29
-
-
0009127620
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.47.3113
-
M. J. Gourlay, T. Uzer, and D. Farrelly, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.47.3113 47, 3113 (1993).
-
(1993)
Phys. Rev. A
, vol.47
, pp. 3113
-
-
Gourlay, M.J.1
Uzer, T.2
Farrelly, D.3
-
30
-
-
0031186013
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.56.220
-
J. von Milczewski and T. Uzer, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.56.220 56, 220 (1997).
-
(1997)
Phys. Rev. A
, vol.56
, pp. 220
-
-
Von Milczewski, J.1
Uzer, T.2
-
32
-
-
0000978994
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.26.323
-
D. R. Herrick, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.26.323 26, 323 (1982).
-
(1982)
Phys. Rev. A
, vol.26
, pp. 323
-
-
Herrick, D.R.1
-
33
-
-
15744369090
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.65.115
-
P. A. Braun, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.65.115 65, 115 (1993).
-
(1993)
Rev. Mod. Phys.
, vol.65
, pp. 115
-
-
Braun, P.A.1
-
34
-
-
0347450519
-
-
PDNPDT 0167-2789 10.1016/S0167-2789(00)00053-1
-
R. H. Cushman and D. A. Sadovskií, Physica D PDNPDT 0167-2789 10.1016/S0167-2789(00)00053-1 142, 166 (2000).
-
(2000)
Physica D
, vol.142
, pp. 166
-
-
Cushman, R.H.1
Sadovskií, D.A.2
-
35
-
-
0033153845
-
-
EULEEJ 0295-5075 10.1209/epl/i1999-00341-6
-
R. H. Cushman and D. A. Sadovskií, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i1999-00341-6 47, 1 (1999).
-
(1999)
Europhys. Lett.
, vol.47
, pp. 1
-
-
Cushman, R.H.1
Sadovskií, D.A.2
-
37
-
-
34547179283
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.76.013404
-
C. R. Schleif and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.013404 76, 013404 (2007).
-
(2007)
Phys. Rev. A
, vol.76
, pp. 013404
-
-
Schleif, C.R.1
Delos, J.B.2
-
40
-
-
84980167278
-
-
CPMAMV 0010-3640 10.1002/cpa.3160330602
-
J. J. Duistermaat, Commun. Pure Appl. Math. CPMAMV 0010-3640 10.1002/cpa.3160330602 33, 687 (1980)
-
(1980)
Commun. Pure Appl. Math.
, vol.33
, pp. 687
-
-
Duistermaat, J.J.1
-
42
-
-
0032535923
-
-
JPHAC5 0305-4470 10.1088/0305-4470/31/2/022
-
M. S. Child, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/31/2/022 31, 657 (1988)
-
(1988)
J. Phys. A
, vol.31
, pp. 657
-
-
Child, M.S.1
-
43
-
-
0037525498
-
-
CMPHAY 0010-3616 10.1007/s002200050621
-
S. V. Ngòc, Commun. Math. Phys. CMPHAY 0010-3616 10.1007/s002200050621 203, 465 (1999)
-
(1999)
Commun. Math. Phys.
, vol.203
, pp. 465
-
-
Ngòc, S.V.1
-
44
-
-
21044440345
-
-
AAMADV 0167-8019 10.1007/s10440-005-1164-7
-
B. I. Zhilinskií, Acta Appl. Math. AAMADV 0167-8019 10.1007/s10440-005-1164-7 87, 281 (2005).
-
(2005)
Acta Appl. Math.
, vol.87
, pp. 281
-
-
Zhilinskií, B.I.1
-
47
-
-
0001209620
-
-
ANJOAA 0004-6256 10.1086/110172
-
F. G. Gustavson, Astron. J. ANJOAA 0004-6256 10.1086/110172 71, 670 (1966).
-
(1966)
Astron. J.
, vol.71
, pp. 670
-
-
Gustavson, F.G.1
-
48
-
-
18344372861
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.38.1896
-
M. L. Du and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.38.1896 38, 1896 (1988)
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1896
-
-
Du, M.L.1
Delos, J.B.2
-
49
-
-
24244464830
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.38.1913
-
M. L. Du and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.38.1913 38, 1913 (1988)
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1913
-
-
Du, M.L.1
Delos, J.B.2
-
50
-
-
0001195262
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.46.1449
-
J. Gao, J. B. Delos, and M. Baruch, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.46.1449 46, 1449 (1992)
-
(1992)
Phys. Rev. A
, vol.46
, pp. 1449
-
-
Gao, J.1
Delos, J.B.2
Baruch, M.3
-
51
-
-
3943061692
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.46.1455
-
J. Gao and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.46.1455 46, 1455 (1992)
-
(1992)
Phys. Rev. A
, vol.46
, pp. 1455
-
-
Gao, J.1
Delos, J.B.2
-
52
-
-
5244221282
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.49.869
-
J. Gao and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.49.869 49, 869 (1994)
-
(1994)
Phys. Rev. A
, vol.49
, pp. 869
-
-
Gao, J.1
Delos, J.B.2
-
53
-
-
0028467846
-
-
JPAPEH 0953-4075 10.1088/0953-4075/27/13/013
-
J. Main and G. Wunner, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/27/ 13/013 27, 2835 (1994)
-
(1994)
J. Phys. B
, vol.27
, pp. 2835
-
-
Main, J.1
Wunner, G.2
-
54
-
-
20444373406
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.63.043409
-
D. M. Wang and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.63.043409 63, 043409 (2001)
-
(2001)
Phys. Rev. A
, vol.63
, pp. 043409
-
-
Wang, D.M.1
Delos, J.B.2
-
55
-
-
0036577384
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.65.053408
-
S. Freund, R. Ubert, E. Flöthmann, K. Welge, D. M. Wang, and J. B. Delos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65.053408 65, 053408 (2002)
-
(2002)
Phys. Rev. A
, vol.65
, pp. 053408
-
-
Freund, S.1
Ubert, R.2
Flöthmann, E.3
Welge, K.4
Wang, D.M.5
Delos, J.B.6
-
56
-
-
4243724024
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.67.063410
-
T. Bartsch, J. Main, and G. Wunner, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.67.063410 67, 063410 (2003)
-
(2003)
Phys. Rev. A
, vol.67
, pp. 063410
-
-
Bartsch, T.1
Main, J.2
Wunner, G.3
-
57
-
-
4243655582
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.67.063411
-
T. Bartsch, J. Main, and G. Wunner, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.67.063411 67, 063411 (2003).
-
(2003)
Phys. Rev. A
, vol.67
, pp. 063411
-
-
Bartsch, T.1
Main, J.2
Wunner, G.3
-
58
-
-
43049115762
-
-
Nearly perpendicular weak fields means |χ| ωf N3 1.
-
Nearly perpendicular weak fields means |χ| ωf N3 1.
-
-
-
-
63
-
-
43049118961
-
-
This 2-form is undefined at points where | μi | =±N/2, but all necessary integrals are well defined.
-
This 2-form is undefined at points where | μi | =±N/2, but all necessary integrals are well defined.
-
-
-
-
64
-
-
42949179693
-
-
These circles have coordinates ψ1 or ψ2, whichever survives according to the discussion in Sec. 3.
-
These circles have coordinates ψ1 or ψ2, whichever survives according to the discussion in Sec. 3.
-
-
-
-
65
-
-
43049136608
-
-
The space of Pauli orbits at fixed Q [the (W, δW) surface] is homeomorphic to a sphere, but we do not establish that it is diffeomorphic to a sphere.
-
The space of Pauli orbits at fixed Q [the (W, δW) surface] is homeomorphic to a sphere, but we do not establish that it is diffeomorphic to a sphere.
-
-
-
-
66
-
-
43049136609
-
-
The classical spectrum is also known as the image of the energy momentum map.
-
The classical spectrum is also known as the image of the energy momentum map.
-
-
-
-
67
-
-
43049083355
-
-
For some parameters, a dashed red curve appears on classically doubly degenerate points of the classical spectrum. Specific examples are the upper boundary of the inner triangular region for the Stark region, and the lower boundary of the inner triangular region for the Zeeman region. In these cases, only one of the two disjoint components of the level set is not a 2-torus. Such cases will always be evident when inspecting the contours of h2 on the (W, δW) surface.
-
For some parameters, a dashed red curve appears on classically doubly degenerate points of the classical spectrum. Specific examples are the upper boundary of the inner triangular region for the Stark region, and the lower boundary of the inner triangular region for the Zeeman region. In these cases, only one of the two disjoint components of the level set is not a 2-torus. Such cases will always be evident when inspecting the contours of h2 on the (W, δW) surface.
-
-
-
-
68
-
-
43049147102
-
-
Equations 40 cannot be linearized at the poles of the (W, δW) surface, and extrema at the poles are not quadratic.
-
Equations 40 cannot be linearized at the poles of the (W, δW) surface, and extrema at the poles are not quadratic.
-
-
-
-
70
-
-
43049136235
-
-
The reference point of the action may be taken to be at Q=0. All other choices of reference point would yield an action that differs from Eq. 43 by an additive constant.
-
The reference point of the action may be taken to be at Q=0. All other choices of reference point would yield an action that differs from Eq. 43 by an additive constant.
-
-
-
-
71
-
-
43049123144
-
-
For 0< |Q|
-
For 0< |Q|
-
-
-
-
72
-
-
43049131809
-
-
By construction, the action is defined only for areas bounded by contours of h2 (W, δW) which do not contain fixed points. See Chap. 10 of Ref..
-
By construction, the action is defined only for areas bounded by contours of h2 (W, δW) which do not contain fixed points. See Chap. 10 of Ref..
-
-
-
-
74
-
-
43049142256
-
-
The quantum basis must include several n -manifolds or important effects, second order in the electric field, will be neglected.
-
The quantum basis must include several n -manifolds or important effects, second order in the electric field, will be neglected.
-
-
-
-
75
-
-
43049141520
-
-
In the definitions of the Q and W operators, the field vectors F and B can be replaced with arbitrary vectors V1 and V2 such that the operators H 0, Q, and W will form a complete set of commuting observables on a basis of bound states of the unperturbed hydrogen atom.
-
In the definitions of the Q and W operators, the field vectors F and B can be replaced with arbitrary vectors V1 and V2 such that the operators H 0, Q, and W will form a complete set of commuting observables on a basis of bound states of the unperturbed hydrogen atom.
-
-
-
-
76
-
-
43049087041
-
-
A lattice can be constructed from a list of energy levels alone. See Ref..
-
A lattice can be constructed from a list of energy levels alone. See Ref..
-
-
-
-
77
-
-
43049125487
-
-
In the Stark limit, the equator W=0 has exceptional structure. It is composed entirely of relative fixed points. Similar exceptional structure is found on ΓN,Q=0 for F and B that lie on the (black and blue online) curves dividing regions of the map.
-
In the Stark limit, the equator W=0 has exceptional structure. It is composed entirely of relative fixed points. Similar exceptional structure is found on ΓN,Q=0 for F and B that lie on the (black and blue online) curves dividing regions of the map.
-
-
-
-
78
-
-
43049123145
-
-
Quantum calculations also show that states belonging to different q - and n -manifolds also exhibit anticrossings with variations in ωf.
-
Quantum calculations also show that states belonging to different q - and n -manifolds also exhibit anticrossings with variations in ωf.
-
-
-
-
79
-
-
43049112797
-
-
www.chrisschleif.com, E-PLRAAN-77-087804 for a detailed derivation. For more information on EPAPS, see
-
See EPAPS Document No. E-PLRAAN-77-087804 for a detailed derivation. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html. This material is also available for download from www.chrisschleif.com
-
-
-
-
80
-
-
43049101481
-
-
See Chap. 22 of Ref. or Chap. 3.8 of Ref..
-
See Chap. 22 of Ref. or Chap. 3.8 of Ref..
-
-
-
-
81
-
-
43049118963
-
-
See Fig. 13 of Ref..
-
See Fig. 13 of Ref..
-
-
-
-
82
-
-
43049121357
-
-
See Chap. 4.4 of Ref..
-
See Chap. 4.4 of Ref..
-
-
-
-
83
-
-
43049101667
-
-
In the six-dimensional phase space 2n, either K is diffeomorphic to a circle (L 0) or its compactification is. Each point x K 2n is labeled by a value of the Delaunay coordinate N.
-
In the six-dimensional phase space 2n, either K is diffeomorphic to a circle (L 0) or its compactification is. Each point x K 2n is labeled by a value of the Delaunay coordinate N.
-
-
-
|