-
1
-
-
41149172664
-
-
In complex variable theory a monodromy theorem states that if a complex variable z is taken around a closed path in the complex plane, then a function f(z) returns to its original value provided that the function has no branch points in the region enclosed by that path. (Weisstein, Eric W. Monodromy Theorem. From MathWorld, http://mathworld.wolfram.com/MonodromyTheorem.html. In classical dynamics a monodromy matrix associated with a periodic orbit describes the relationship between initial displacements and final displacements from a periodic orbit: in the linear approximation the vector of final displacements is equal to the monodromy matrix times the vector of initial displacements.
-
Eric W. Monodromy Theorem
-
-
-
6
-
-
0037525498
-
-
Further mathematical developments on Quantum Monodromy are given by: Vu Ngoc S 1999 Commun. Math. Phys. 203 465-479
-
(1999)
Commun. Math. Phys.
, vol.203
, Issue.2
, pp. 465-479
-
-
Vu Ngoc, S.1
-
15
-
-
28844447804
-
-
Zobov N F, Shirin S V, Polyansky O L, Tennyson J, Coheur P F, Bernath P F, Carleer M and Colin R 2005 Chem. Phys. Lett. 414 193
-
(2005)
Chem. Phys. Lett.
, vol.414
, Issue.1-3
, pp. 193
-
-
Zobov, N.F.1
Shirin, S.V.2
Polyansky, O.L.3
Tennyson, J.4
Coheur, P.F.5
Bernath, P.F.6
Carleer, M.7
Colin, R.8
-
16
-
-
4043084023
-
-
Cushman R H, Dullin H R, Giacobbe A, Holm D D, Joyeux M, Lynch P, Sadovski D A, Zhilinski B I 2004 Phys. Rev. Lett. 93 024302
-
(2004)
Phys. Rev. Lett.
, vol.93
, Issue.2
, pp. 024302
-
-
Cushman, R.H.1
Dullin, H.R.2
Giacobbe, A.3
Holm, D.D.4
Joyeux, M.5
Lynch, P.6
Sadovski, D.A.7
Zhilinski, B.I.8
-
18
-
-
28844437722
-
-
Winnewisser B P, Winnewisser M, Medvedev I R, Behnke M, De Lucia F C, Ross S C and Koput J 2005 Phys. Rev. Lett. 95 243002
-
(2005)
Phys. Rev. Lett.
, vol.95
, Issue.24
, pp. 243002
-
-
Winnewisser, B.P.1
Winnewisser, M.2
Medvedev, I.R.3
Behnke, M.4
De Lucia, F.C.5
Ross, S.C.6
Koput, J.7
-
19
-
-
33749262769
-
-
Winnewisser M, Winnewisser B P, Medvedev I R, De Lucia F C, Ross S C, Bates L M 2006 J. molecular structure 798 (1) 1
-
(2006)
J. Molecular Structure
, vol.798
, Issue.1-3
, pp. 1
-
-
Winnewisser, M.1
Winnewisser, B.P.2
Medvedev, I.R.3
De Lucia, F.C.4
Ross, S.C.5
Bates, L.M.6
-
21
-
-
34250908206
-
-
Pauli W 1926 Z. Phys. 36 336
-
(1926)
Z. Phys.
, vol.36
, Issue.5
, pp. 336
-
-
Pauli, W.1
|