-
2
-
-
0000938886
-
Fractal dimensions and the phenomenon of intermittency in quantum dynamics
-
Barbaroux J.-M., Germinet F. and Tcheremchantsev S. (2001). Fractal dimensions and the phenomenon of intermittency in quantum dynamics. Duke Math. J. 110: 161-193
-
(2001)
Duke Math. J.
, vol.110
, pp. 161-193
-
-
Barbaroux, J.-M.1
Germinet, F.2
Tcheremchantsev, S.3
-
5
-
-
0000944845
-
Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation
-
Casdagli M. (1986). Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107: 295-318
-
(1986)
Commun. Math. Phys.
, vol.107
, pp. 295-318
-
-
Casdagli, M.1
-
6
-
-
54049158281
-
Strictly ergodic subshifts and nassociated operators
-
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday Providence, RI: Amer. Math. Soc.
-
Damanik, D.: Strictly ergodic subshifts and nassociated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, Proceedings of Symposia in Pure Mathematics 74, Providence, RI: Amer. Math. Soc. 2006, pp. 505-538
-
(2006)
Proceedings of Symposia in Pure Mathematics
, vol.74
, pp. 505-538
-
-
Damanik, D.1
-
7
-
-
0033475027
-
Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues
-
Damanik D. and Lenz D. (1999). Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues. Commun. Math. Phys. 207: 687-696
-
(1999)
Commun. Math. Phys.
, vol.207
, pp. 687-696
-
-
Damanik, D.1
Lenz, D.2
-
8
-
-
0001751837
-
Uniform spectral properties of one-dimensional quasicrystals. II. the Lyapunov exponent
-
Damanik D. and Lenz D. (1999). Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent. Lett. Math. Phys. 50: 245-257
-
(1999)
Lett. Math. Phys.
, vol.50
, pp. 245-257
-
-
Damanik, D.1
Lenz, D.2
-
9
-
-
0038239329
-
Power-law bounds on transfer matrices and quantum dynamics in one dimension
-
Damanik D. and Tcheremchantsev S. (2003). Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236: 513-534
-
(2003)
Commun. Math. Phys.
, vol.236
, pp. 513-534
-
-
Damanik, D.1
Tcheremchantsev, S.2
-
12
-
-
33751347915
-
Hyperbolic dynamical systems
-
Amsterdam: North-Holland
-
Hasselblatt, B.: Hyperbolic dynamical systems. In: Handbook of Dynamical SystemsVol. 1A. Amsterdam: North-Holland, 2002, pp. 239-319
-
(2002)
Handbook of Dynamical Systems
, vol.1 A
, pp. 239-319
-
-
Hasselblatt, B.1
-
13
-
-
0000670801
-
Singular continuous spectrum for palindromic Schrödinger operators
-
Hof A., Knill O. and Simon B. (1995). Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174: 149-159
-
(1995)
Commun. Math. Phys.
, vol.174
, pp. 149-159
-
-
Hof, A.1
Knill, O.2
Simon, B.3
-
14
-
-
33845261621
-
Power law growth for the resistance in the Fibonacci model
-
Iochum B. and Testard D. (1991). Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65: 715-723
-
(1991)
J. Stat. Phys.
, vol.65
, pp. 715-723
-
-
Iochum, B.1
Testard, D.2
-
16
-
-
0039648477
-
Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential
-
Kaminaga M. (1996). Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential. Forum Math. 8: 63-69
-
(1996)
Forum Math.
, vol.8
, pp. 63-69
-
-
Kaminaga, M.1
-
17
-
-
0141541804
-
Dynamical upper bounds on wavepacket spreading
-
Killip R., Kiselev A. and Last Y. (2003). Dynamical upper bounds on wavepacket spreading. Amer. J. Math. 125: 1165-1198
-
(2003)
Amer. J. Math.
, vol.125
, pp. 1165-1198
-
-
Killip, R.1
Kiselev, A.2
Last, Y.3
-
18
-
-
0000532658
-
Localization problem in one dimension: Mapping and escape
-
Kohmoto M., Kadanoff L.P. and Tang C. (1983). Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 50: 1870-1872
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1870-1872
-
-
Kohmoto, M.1
Kadanoff, L.P.2
Tang, C.3
-
19
-
-
0001575233
-
Jacobi matrices with random potentials taking finitely many values
-
Kotani S. (1989). Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1: 129-133
-
(1989)
Rev. Math. Phys.
, vol.1
, pp. 129-133
-
-
Kotani, S.1
-
20
-
-
51249173621
-
The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces
-
Mañé R. (1990). The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.) 20: 1-24
-
(1990)
Bol. Soc. Brasil. Mat. (N.S.)
, vol.20
, pp. 1-24
-
-
Mañé, R.1
-
22
-
-
84956125562
-
-
Ergodic Theory Dynam. Systems Erratum. Ergodic Theory Dynam. Systems 5, 319 (1985)
-
McCluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergodic Theory Dynam. Systems 3, 251-261 (1983); Erratum. Ergodic Theory Dynam. Systems 5, 319 (1985)
-
(1983)
Hausdorff Dimension for Horseshoes
, vol.3
, pp. 251-261
-
-
McCluskey, H.1
Manning, A.2
-
23
-
-
0000510446
-
One-dimensional Schrödinger equation with an almost periodic potential
-
Ostlund S., Pandit R., Rand D., Schellnhuber H.J. and Siggia E.D. (1983). One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50: 1873-1877
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1873-1877
-
-
Ostlund, S.1
Pandit, R.2
Rand, D.3
Schellnhuber, H.J.4
Siggia, E.D.5
-
25
-
-
0001731090
-
On the continuity of the Hausdorff dimension and limit capacity for horseshoes
-
-temp Dynamical Systems Berlin: Springer
-
Palis, J., Viana, M.: On the continuity of the Hausdorff dimension and limit capacity for horseshoes, In: Dynamical Systems, Lecture Notes in Mathematics 1331, Berlin: Springer, 1988, pp. 150-160
-
(1988)
Lecture Notes in Mathematics
, vol.1331
, pp. 150-160
-
-
Palis, J.1
Viana, M.2
-
28
-
-
34250103530
-
The spectrum of a quasiperiodic Schrödinger operator
-
Süto A. (1987). The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111: 409-415
-
(1987)
Commun. Math. Phys.
, vol.111
, pp. 409-415
-
-
Süto, A.1
-
29
-
-
0042937447
-
Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian
-
Süto A. (1989). Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56: 525-531
-
(1989)
J. Stat. Phys.
, vol.56
, pp. 525-531
-
-
Süto, A.1
-
30
-
-
0001711762
-
Limit capacity and Hausdorff dimension of dynamically defined Cantor sets
-
Dynamical Systems Springer, Berlin
-
Takens, F.: Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. In: Dynamical Systems, Lecture Notes in Mathematics 1331, Springer, Berlin, 1988, pp. 196-212
-
(1988)
Lecture Notes in Mathematics
, vol.1331
, pp. 196-212
-
-
Takens, F.1
-
31
-
-
0037428622
-
Mixed lower bounds for quantum transport
-
Tcheremchantsev S. (2003). Mixed lower bounds for quantum transport. J. Funct. Anal. 197: 247-282
-
(2003)
J. Funct. Anal.
, vol.197
, pp. 247-282
-
-
Tcheremchantsev, S.1
-
32
-
-
42449143600
-
-
Tcheremchantsev, S.: In preparation
-
Tcheremchantsev, S.: In preparation
-
-
-
|