메뉴 건너뛰기




Volumn 8, Issue 1, 1996, Pages 63-69

Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0039648477     PISSN: 09337741     EISSN: None     Source Type: Journal    
DOI: 10.1515/form.1996.8.63     Document Type: Article
Times cited : (23)

References (10)
  • 3
    • 33846866830 scopus 로고
    • Absence of localization in a class of Schrödinger operators with quasiperiodic potential
    • Delyon, F., Petritis, D.: Absence of localization in a class of Schrödinger operators with quasiperiodic potential. Comm. Math. Phys. 103 (1986), 441-444
    • (1986) Comm. Math. Phys. , vol.103 , pp. 441-444
    • Delyon, F.1    Petritis, D.2
  • 5
    • 0000532658 scopus 로고
    • Localization problem in one dimension; mapping and escape
    • Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension; mapping and escape. Phys. Rev. Lett. 50 (1983), 1870-1872
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 1870-1872
    • Kohmoto, M.1    Kadanoff, L.P.2    Tang, C.3
  • 6
    • 0001575233 scopus 로고
    • Jacobi matrices with random potentials taking finitely many values
    • Kotani, S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1 (1989), 129-133
    • (1989) Rev. Math. Phys. , vol.1 , pp. 129-133
    • Kotani, S.1
  • 8
    • 0000311519 scopus 로고
    • Phonon in one dimensional quasicrystal
    • Luck, J. M., Petritis, D.: Phonon in one dimensional quasicrystal. J. Stat. Phys. 42 (1986), 289-310
    • (1986) J. Stat. Phys. , vol.42 , pp. 289-310
    • Luck, J.M.1    Petritis, D.2
  • 9
    • 34250103530 scopus 로고
    • The spectrum of a quasiperiodic Schrödinger operator
    • Sütö, A.: The spectrum of a quasiperiodic Schrödinger operator. Comm. Math. Phys. 111 (1987), 409-415
    • (1987) Comm. Math. Phys. , vol.111 , pp. 409-415
    • Sütö, A.1
  • 10
    • 0042937447 scopus 로고
    • Singular continuous spectrum on a cantor set of zero lebesgue measure for the fibonacci hamiltonian
    • Sütö, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56 (1989), 525-543
    • (1989) J. Stat. Phys. , vol.56 , pp. 525-543
    • Sütö, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.