메뉴 건너뛰기




Volumn 80, Issue 10, 2001, Pages 977-1012

Generalized fractal dimensions: Equivalences and basic properties

Author keywords

Generalized entropies dimensions; Hentschel Procaccia dimensions; Multifractal dimensions; R nyi dimensions

Indexed keywords


EID: 0035604405     PISSN: 00217824     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0021-7824(01)01219-3     Document Type: Article
Times cited : (59)

References (39)
  • 1
    • 0031220833 scopus 로고    scopus 로고
    • Remarks on the relation between quantum dynamics and fractal spectra
    • Barbaroux J.-M., Combes J.-M., Montcho R. Remarks on the relation between quantum dynamics and fractal spectra. J. Math. Anal. Appl. 213:1997;698-722.
    • (1997) J. Math. Anal. Appl. , vol.213 , pp. 698-722
    • Barbaroux, J.-M.1    Combes, J.-M.2    Montcho, R.3
  • 3
    • 0000938886 scopus 로고    scopus 로고
    • Fractal dimensions and the phenomenon of intermittency in quantum dynamics
    • to appear in
    • J.-M. BARBAROUX, F. GERMINET, S. TCHEREMCHANTSEV, Fractal dimensions and the phenomenon of intermittency in quantum dynamics, to appear in Duke Math. J.
    • Duke Math. J
    • Barbaroux, J.-M.1    Germinet, F.2    Tcheremchantsev, S.3
  • 4
    • 0033416835 scopus 로고    scopus 로고
    • Dimension and product structure of hyperbolic measures
    • Barreira L., Pesin Y.B., Schmeling J. Dimension and product structure of hyperbolic measures. Ann. of Math. 149:1999;755-783.
    • (1999) Ann. of Math. , vol.149 , pp. 755-783
    • Barreira, L.1    Pesin, Y.B.2    Schmeling, J.3
  • 6
    • 0034339855 scopus 로고    scopus 로고
    • Subdiffusive quantum transport for 3-D Hamiltonians with absolutely continuous spectra
    • Bellissard J., Schulz-Baldes H. Subdiffusive quantum transport for 3-D Hamiltonians with absolutely continuous spectra. J. Statist. Phys. 99:2000;587-594.
    • (2000) J. Statist. Phys. , vol.99 , pp. 587-594
    • Bellissard, J.1    Schulz-Baldes, H.2
  • 7
    • 77956813912 scopus 로고
    • Connection between quantum dynamics and spectral properties of time evolution operators
    • W.F. Ames, E.M. Harrel, & J.V. Herod. Academic Press
    • Combes J.-M. Connection between quantum dynamics and spectral properties of time evolution operators. Ames W.F., Harrel E.M., Herod J.V. Differential Equations and Applications in Mathematical Physics. 1993;59-69 Academic Press.
    • (1993) Differential Equations and Applications in Mathematical Physics , pp. 59-69
    • Combes, J.-M.1
  • 9
    • 0001743732 scopus 로고
    • Some results on the behaviour and estimation of the fractal dimensions of distributions on attractors
    • Cutler C.D. Some results on the behaviour and estimation of the fractal dimensions of distributions on attractors. J. Statist. Phys. 62:(3/4):1991;651-708.
    • (1991) J. Statist. Phys. , vol.62 , Issue.3-4 , pp. 651-708
    • Cutler, C.D.1
  • 13
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Phys. D. 9:1983;189-208.
    • (1983) Phys. D , vol.9 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 14
    • 84956097442 scopus 로고
    • Spectral properties of quantum diffusion on discrete lattices
    • On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993) 729-733
    • Guarneri I. Spectral properties of quantum diffusion on discrete lattices. Europhys. Lett. 10:1989;95-100. On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993) 729-733.
    • (1989) Europhys. Lett. , vol.10 , pp. 95-100
    • Guarneri, I.1
  • 15
    • 0030494615 scopus 로고    scopus 로고
    • Singular continuous spectra and discrete wave packet dynamics
    • Guarneri I. Singular continuous spectra and discrete wave packet dynamics. J. Math. Phys. 37:1996;5195-5206.
    • (1996) J. Math. Phys. , vol.37 , pp. 5195-5206
    • Guarneri, I.1
  • 16
    • 0003232182 scopus 로고    scopus 로고
    • Lower bounds on wave packet propagation by packing dimensions of spectral measures
    • paper 1
    • Guarneri I., Schulz-Baldes H. Lower bounds on wave packet propagation by packing dimensions of spectral measures. Math. Phys. Elec. J. 5:1999;. paper 1.
    • (1999) Math. Phys. Elec. J. , vol.5
    • Guarneri, I.1    Schulz-Baldes, H.2
  • 17
    • 0000881439 scopus 로고    scopus 로고
    • Intermittent lower bound on quantum diffusion
    • Guarneri I., Schulz-Baldes H. Intermittent lower bound on quantum diffusion. Lett. Math. Phys. 49:1999;317-324.
    • (1999) Lett. Math. Phys. , vol.49 , pp. 317-324
    • Guarneri, I.1    Schulz-Baldes, H.2
  • 18
    • 0030574388 scopus 로고    scopus 로고
    • Three equivalent definitions of the correlation dimension of a probability measure
    • Guerin C.A., Holschneider M. Three equivalent definitions of the correlation dimension of a probability measure. J. Statist. Phys. 29:1996;7651-7667.
    • (1996) J. Statist. Phys. , vol.29 , pp. 7651-7667
    • Guerin, C.A.1    Holschneider, M.2
  • 19
    • 0031534990 scopus 로고    scopus 로고
    • Coincidence of various dimensions associated with metrics and measures on metric spaces
    • Guysinsky M., Yaskolko S. Coincidence of various dimensions associated with metrics and measures on metric spaces. Discrete Contin. Dynam. Systems. 3:1997;591-603.
    • (1997) Discrete Contin. Dynam. Systems , vol.3 , pp. 591-603
    • Guysinsky, M.1    Yaskolko, S.2
  • 20
    • 3342916075 scopus 로고
    • Fractal measures and their singularities: The characterization of strange sets
    • Halsey T.C., Jensen M., Kaddanov L., Procaccia I., Schraiman B. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A. 33:1986;1141-1151.
    • (1986) Phys. Rev. A , vol.33 , pp. 1141-1151
    • Halsey, T.C.1    Jensen, M.2    Kaddanov, L.3    Procaccia, I.4    Schraiman, B.5
  • 21
    • 0346372923 scopus 로고
    • The infinite number of generalized dimensions of fractals and strange attractors
    • Hentschel H.G.E., Procaccia I. The infinite number of generalized dimensions of fractals and strange attractors. Phys. D. 8:1983;435-444.
    • (1983) Phys. D , vol.8 , pp. 435-444
    • Hentschel, H.G.E.1    Procaccia, I.2
  • 22
    • 0032065454 scopus 로고    scopus 로고
    • Estimations de la dimension inférieure et de la dimension supérieure des mesures
    • Heurteaux Y. Estimations de la dimension inférieure et de la dimension supérieure des mesures. Ann. Inst. H. Poincaré 34:(3):1998;309-338.
    • (1998) Ann. Inst. H. Poincaré , vol.34 , Issue.3 , pp. 309-338
    • Heurteaux, Y.1
  • 24
    • 0030589769 scopus 로고    scopus 로고
    • Quantum dynamics and decomposition of singular continuous spectrum
    • Last Y. Quantum dynamics and decomposition of singular continuous spectrum. J. Funct. Anal. 142:1996;406-445.
    • (1996) J. Funct. Anal. , vol.142 , pp. 406-445
    • Last, Y.1
  • 25
    • 0000815707 scopus 로고
    • Fractal measures and mean p-variations
    • Lau K.S. Fractal measures and mean p -variations. J. Funct. Anal. 108:1992;427-457.
    • (1992) J. Funct. Anal. , vol.108 , pp. 427-457
    • Lau, K.S.1
  • 27
    • 85027614017 scopus 로고
    • A multifractal formalism
    • Olsen L. A multifractal formalism. Adv. Math. 116:1995;82-195.
    • (1995) Adv. Math. , vol.116 , pp. 82-195
    • Olsen, L.1
  • 28
    • 0034384754 scopus 로고    scopus 로고
    • Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures
    • Olsen L. Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures. Math. Scand. 86:2000;109-129.
    • (2000) Math. Scand. , vol.86 , pp. 109-129
    • Olsen, L.1
  • 30
    • 0030353353 scopus 로고    scopus 로고
    • On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture
    • Pesin Y.B., Weiss H. On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture. Comm. Math. Phys. 182:1996;105-153.
    • (1996) Comm. Math. Phys. , vol.182 , pp. 105-153
    • Pesin, Y.B.1    Weiss, H.2
  • 31
    • 21744460729 scopus 로고    scopus 로고
    • The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples
    • Pesin Y.B., Weiss H. The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos. 7:1997;89-106.
    • (1997) Chaos , vol.7 , pp. 89-106
    • Pesin, Y.B.1    Weiss, H.2
  • 32
    • 21444441654 scopus 로고    scopus 로고
    • A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions
    • Pesin Y.B., Weiss H. A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J. Statist. Phys. 86:1997;233-275.
    • (1997) J. Statist. Phys. , vol.86 , pp. 233-275
    • Pesin, Y.B.1    Weiss, H.2
  • 33
    • 0032221727 scopus 로고    scopus 로고
    • Anomalous transport: A mathematical framework
    • Schulz-Baldes H., Bellissard J. Anomalous transport: a mathematical framework. Rev. Math. Phys. 10:1998;1-46.
    • (1998) Rev. Math. Phys. , vol.10 , pp. 1-46
    • Schulz-Baldes, H.1    Bellissard, J.2
  • 34
    • 0033242957 scopus 로고    scopus 로고
    • Multifractal analysis of local entropies for expansive homeomorphisms with specification
    • Takens F., Verbitskii E.A. Multifractal analysis of local entropies for expansive homeomorphisms with specification. Comm. Math. Phys. 203:1999;593-612.
    • (1999) Comm. Math. Phys. , vol.203 , pp. 593-612
    • Takens, F.1    Verbitskii, E.A.2
  • 37
    • 84956256298 scopus 로고
    • Dimension, entropy and Lyapounov exponents
    • Young L. Dimension, entropy and Lyapounov exponents. Ergodic Theory Dynamical Systems. 2:1982;109-124.
    • (1982) Ergodic Theory Dynamical Systems , vol.2 , pp. 109-124
    • Young, L.1
  • 38
    • 0346842444 scopus 로고    scopus 로고
    • In [38] the generalized fractal dimensions for negative q's are studied. Issues like equivalence (with suitable Rényi dimensions) and finiteness are discussed. In particular answers to questions raised in Remark 3.1 are provided.
    • In [38] the generalized fractal dimensions for negative q 's are studied. Issues like equivalence (with suitable Rényi dimensions) and finiteness are discussed. In particular answers to questions raised in Remark 3.1 are provided.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.