-
1
-
-
0001835099
-
Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems
-
Schmeisser, H. J, Triebel, H, eds, Teubner, pp
-
Amann, H. (1993). Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H. J., Triebel, H., eds. Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, pp. 9-126.
-
(1993)
Function Spaces, Differential Operators and Nonlinear Analysis
, pp. 9-126
-
-
Amann, H.1
-
2
-
-
0007292463
-
Stefan problem for the Laplace equation with regard for the curvature of the free boundary
-
Bazaliy, B. (1997). Stefan problem for the Laplace equation with regard for the curvature of the free boundary. Ukrainian Math. J. 49:1465-1484.
-
(1997)
Ukrainian Math. J
, vol.49
, pp. 1465-1484
-
-
Bazaliy, B.1
-
3
-
-
0038384640
-
A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth
-
Bazaliy, B., Friedman, A. (2003a). A free boundary problem for an elliptic-parabolic system: application to a model of tumor growth. Comm. Partial Differential Equations 28(3-4):517-560.
-
(2003)
Comm. Partial Differential Equations
, vol.28
, Issue.3-4
, pp. 517-560
-
-
Bazaliy, B.1
Friedman, A.2
-
4
-
-
0242679755
-
Global existence and asymptotic stability for an ellipticparabolic free boundary problem: An application to a model of tumor growth
-
Bazaliy, B., Friedman, A. (2003b). Global existence and asymptotic stability for an ellipticparabolic free boundary problem: an application to a model of tumor growth. Indiana Univ. Math. J. 52(5): 1265-1304.
-
(2003)
Indiana Univ. Math. J
, vol.52
, Issue.5
, pp. 1265-1304
-
-
Bazaliy, B.1
Friedman, A.2
-
5
-
-
0033158956
-
A weakly nonlinear analysis of a model of avascular solid tumor growth
-
Byrne, H. M. (1999). A weakly nonlinear analysis of a model of avascular solid tumor growth. J. Math. Biol. 39:59-89.
-
(1999)
J. Math. Biol
, vol.39
, pp. 59-89
-
-
Byrne, H.M.1
-
6
-
-
0028790729
-
Growth of nonnecrotic tumors in the presence and absence of inhibitors
-
Byrne, H. M., Chaplain, M. A. J. (1995). Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130:151-181.
-
(1995)
Math. Biosci
, vol.130
, pp. 151-181
-
-
Byrne, H.M.1
Chaplain, M.A.J.2
-
7
-
-
0001649885
-
Existence, uniqueness and regularity of classical solutions of the Mullins-Sekerka problem
-
Chen, X., Hong, J., Yi, F. (1997). Existence, uniqueness and regularity of classical solutions of the Mullins-Sekerka problem. Comm. Partial Differential Equations 21:1705-1727.
-
(1997)
Comm. Partial Differential Equations
, vol.21
, pp. 1705-1727
-
-
Chen, X.1
Hong, J.2
Yi, F.3
-
8
-
-
0036584916
-
Analysis of a mathematical model for the growth of tumors under the action of external inhibitors
-
Cui, S. (2002). Analysis of a mathematical model for the growth of tumors under the action of external inhibitors. J. Math. Biol. 44:395-426.
-
(2002)
J. Math. Biol
, vol.44
, pp. 395-426
-
-
Cui, S.1
-
9
-
-
27144544441
-
Analysis of a free boundary problem modeling tumor growth
-
Cui, S. (2005a). Analysis of a free boundary problem modeling tumor growth. Acta Math. Sinica (English Series) 21:1071-1082.
-
(2005)
Acta Math. Sinica (English Series)
, vol.21
, pp. 1071-1082
-
-
Cui, S.1
-
10
-
-
22544467766
-
Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors
-
Cui, S. (2005b). Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors. Interfaces and Free Boundaries 7:147-159.
-
(2005)
Interfaces and Free Boundaries
, vol.7
, pp. 147-159
-
-
Cui, S.1
-
11
-
-
33750606138
-
Existence of a stationary solution for the modified ward-King tumor growth model
-
Cui, S. (2006). Existence of a stationary solution for the modified ward-King tumor growth model. Advances Appl. Math. 36:421-445.
-
(2006)
Advances Appl. Math
, vol.36
, pp. 421-445
-
-
Cui, S.1
-
12
-
-
41849108874
-
Well-posedness and stability of a multi-dimensional tumor growth model
-
Submitted
-
Cui, S., Escher, J. Well-posedness and stability of a multi-dimensional tumor growth model. Submitted.
-
-
-
Cui, S.1
Escher, J.2
-
13
-
-
0034040582
-
Analysis of a mathematical model of the effect of inhibitors on the growth of tumors
-
Cui, S., Friedman, A. (2000). Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164:103-137.
-
(2000)
Math. Biosci
, vol.164
, pp. 103-137
-
-
Cui, S.1
Friedman, A.2
-
14
-
-
0035869870
-
Analysis of a mathematical model of the growth of necrotic tumors
-
Cui, S., Friedman, A. (2001). Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255:636-677.
-
(2001)
J. Math. Anal. Appl
, vol.255
, pp. 636-677
-
-
Cui, S.1
Friedman, A.2
-
15
-
-
0042363716
-
A free boundary problem for a singular system of differential equations: An application to a model of tumor growth
-
Cui, S., Friedman, A. (2002). A free boundary problem for a singular system of differential equations: an application to a model of tumor growth. Trans. Amer. Math. Soc. 355:3537-3590.
-
(2002)
Trans. Amer. Math. Soc
, vol.355
, pp. 3537-3590
-
-
Cui, S.1
Friedman, A.2
-
16
-
-
84979081677
-
A hyperbolic free boundary problem modeling tumor growth
-
Cui, S., Friedman, A. (2003). A hyperbolic free boundary problem modeling tumor growth. Interfaces and Free Boundaries. 5:159-181.
-
(2003)
Interfaces and Free Boundaries
, vol.5
, pp. 159-181
-
-
Cui, S.1
Friedman, A.2
-
17
-
-
27844600157
-
Global existence for a parabolic-hyperbolic free boundary problem modeling tumor growth
-
Cui, S., Wei, X. (2005). Global existence for a parabolic-hyperbolic free boundary problem modeling tumor growth. Acta Math. Appl. Sinica (English Series) 21:3537-3590.
-
(2005)
Acta Math. Appl. Sinica (English Series)
, vol.21
, pp. 3537-3590
-
-
Cui, S.1
Wei, X.2
-
18
-
-
39449127707
-
Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors
-
Cui, S., Escher, J. (2007). Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors. SIAM J. Math. Anal. 39:210-235.
-
(2007)
SIAM J. Math. Anal
, vol.39
, pp. 210-235
-
-
Cui, S.1
Escher, J.2
-
19
-
-
0002500168
-
Equations d'évolution abstraites nonlinéaires de type parabolique.
-
Da Prato, G., Grisvard, P. (1979). Equations d'évolution abstraites nonlinéaires de type parabolique. Ann. Mat. Pura Appl. 120:329-396.
-
(1979)
Ann. Mat. Pura Appl
, vol.120
, pp. 329-396
-
-
Da Prato, G.1
Grisvard, P.2
-
21
-
-
3242743726
-
Classical solutions to a moving boundary problem for an elliptic-parabolic system
-
Escher, J. (2004). Classical solutions to a moving boundary problem for an elliptic-parabolic system. Interfaces Free and Boundaries 6:175-193.
-
(2004)
Interfaces Free and Boundaries
, vol.6
, pp. 175-193
-
-
Escher, J.1
-
22
-
-
0000010015
-
Classical solutions for Hele-Shaw models with surface tension
-
Escher, J., Simonett, G. (1997a). Classical solutions for Hele-Shaw models with surface tension. Adv. Diff. Equa. 2:619-642.
-
(1997)
Adv. Diff. Equa
, vol.2
, pp. 619-642
-
-
Escher, J.1
Simonett, G.2
-
23
-
-
0031478022
-
Classical solutions of multidimensional Hele-Shaw models
-
Escher, J., Simonett, G. (1997b). Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28:1028-1047.
-
(1997)
SIAM J. Math. Anal
, vol.28
, pp. 1028-1047
-
-
Escher, J.1
Simonett, G.2
-
24
-
-
22044436278
-
The volume preserving mean curvature flow near spheres
-
Escher, J., Simonett, G. (1998a). The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc. 126:2789-2796.
-
(1998)
Proc. Amer. Math. Soc
, vol.126
, pp. 2789-2796
-
-
Escher, J.1
Simonett, G.2
-
25
-
-
0001025274
-
A centre manifold analysis for the Mullins-Sekerka model
-
Escher, J., Simonett, G. (1998b). A centre manifold analysis for the Mullins-Sekerka model. J. Differential Equations 143:267-292.
-
(1998)
J. Differential Equations
, vol.143
, pp. 267-292
-
-
Escher, J.1
Simonett, G.2
-
26
-
-
0033094895
-
Analysis of a mathematical model for the growth of tumors
-
Friedman, A., Reitich, F. (1999). Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38:262-284.
-
(1999)
J. Math. Biol
, vol.38
, pp. 262-284
-
-
Friedman, A.1
Reitich, F.2
-
27
-
-
0242588180
-
Symmetry-breaking bifurcation of analytic solutions to free boundary problems
-
Friedman, A., Reitich, F. (2000a). Symmetry-breaking bifurcation of analytic solutions to free boundary problems. Trans. Amer. Math. Soc. 353:1587-1634.
-
(2000)
Trans. Amer. Math. Soc
, vol.353
, pp. 1587-1634
-
-
Friedman, A.1
Reitich, F.2
-
28
-
-
0035634058
-
On the existence of spatially patterned dormant malignancies in the model for the growth of non-necrotic vascular tumor
-
Friedman, A., Reitich, F. (2000b). On the existence of spatially patterned dormant malignancies in the model for the growth of non-necrotic vascular tumor. Math. Models Appl. Sci. 11:601-625.
-
(2000)
Math. Models Appl. Sci
, vol.11
, pp. 601-625
-
-
Friedman, A.1
Reitich, F.2
-
29
-
-
0142028939
-
Symmetric-breaking bifurcations of free boundary problems in three dimensions
-
Friedman, A., Fontelos, M. (2003). Symmetric-breaking bifurcations of free boundary problems in three dimensions. Asymptot. Anal. 35:187-206.
-
(2003)
Asymptot. Anal
, vol.35
, pp. 187-206
-
-
Friedman, A.1
Fontelos, M.2
-
30
-
-
85130332650
-
Bifurcation from stability to instability for a free boundary problem arising in a tumor model
-
Friedman, A., Hu, B. (2006a). Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Rat. Mech. Anal. 180:293-330.
-
(2006)
Arch. Rat. Mech. Anal
, vol.180
, pp. 293-330
-
-
Friedman, A.1
Hu, B.2
-
31
-
-
33646686604
-
Asymptotic stability for a free boundary problem arising in a tumor model
-
Friedman, A., Hu, B. (2006b). Asymptotic stability for a free boundary problem arising in a tumor model. J. Differential Equations 227:598-639.
-
(2006)
J. Differential Equations
, vol.227
, pp. 598-639
-
-
Friedman, A.1
Hu, B.2
-
32
-
-
0017198676
-
On the growth and stability of cell cultures and solid tumors
-
Greenspan, H. (1976). On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56:229-242.
-
(1976)
J. Theor. Biol
, vol.56
, pp. 229-242
-
-
Greenspan, H.1
-
35
-
-
0031087466
-
Mathematical modelling of avascular tumor growth
-
Ward, J. P., King, J. R. (1997). Mathematical modelling of avascular tumor growth. IMA J. Math. Appl. Med. Biol. 14:39-70.
-
(1997)
IMA J. Math. Appl. Med. Biol
, vol.14
, pp. 39-70
-
-
Ward, J.P.1
King, J.R.2
|