-
1
-
-
0022799748
-
A simplified mathematical model of tumor growth
-
Zbl 0601.92007 MR 1 733090
-
ADAM, J. A simplified mathematical model of tumor growth. Math. Biosci. 81 (1986), 224-229. Zbl 0601.92007 MR 1 733 090
-
(1986)
Math. Biosci.
, vol.81
, pp. 224-229
-
-
Adam, J.1
-
2
-
-
85032175501
-
A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth
-
to appear
-
BAZALIY, B. & FRIEDMAN, A. A free boundary problem for an elliptic-parabolic system: application to a model of tumor growth. Comm. Partial Differential Equations, to appear.
-
Comm. Partial Differential Equations
-
-
Bazaliy, B.1
Friedman, A.2
-
3
-
-
85032175720
-
Global existence and stability for an elliptic-parabolic free boundary problem: An application of a model of tumor growth
-
to appear
-
BAZALIY, B. & FRIEDMAN, A. Global existence and stability for an elliptic-parabolic free boundary problem: an application of a model of tumor growth. Indiana Univ. Math. J., to appear.
-
Indiana Univ. Math. J.
-
-
Bazaliy, B.1
Friedman, A.2
-
4
-
-
0034254401
-
Modelling and mathematical problems related to tumor evolution and its interaction with the immune system
-
Zbl 0997.92020 MR 2001i:92016
-
BELLOMO, N. & PREZIOSI, L. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Modelling 32 (2000), 413-452. Zbl 0997.92020 MR 2001i:92016
-
(2000)
Math. Comput. Modelling
, vol.32
, pp. 413-452
-
-
Bellomo, N.1
Preziosi, L.2
-
5
-
-
0027395356
-
A qualitative analysis of some models of tissue growth
-
Zbl 0786.92011
-
BRITTON, N. & CHAPLAIN, M. A qualitative analysis of some models of tissue growth. Math. Biosci. 113 (1993), 77-89. Zbl 0786.92011
-
(1993)
Math. Biosci.
, vol.113
, pp. 77-89
-
-
Britton, N.1
Chaplain, M.2
-
6
-
-
0033158956
-
A weakly nonlinear analysis of a model of vascular solid tumor growth
-
Zbl 0981.92011
-
BYRNE, H. A weakly nonlinear analysis of a model of vascular solid tumor growth. J. Math. Biol. 39 (1999), 59-89. Zbl 0981.92011
-
(1999)
J. Math. Biol.
, vol.39
, pp. 59-89
-
-
Byrne, H.1
-
7
-
-
0028790729
-
Growth of nonnecrotic tumors in the presence and absence of inhibitors
-
Zbl 0836.92011
-
BYRNE, H. & CHAPLAIN, M. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130 (1995), 130-151. Zbl 0836.92011
-
(1995)
Math. Biosci.
, vol.130
, pp. 130-151
-
-
Byrne, H.1
Chaplain, M.2
-
8
-
-
0030586186
-
Growth of necrotic tumors in the presence and absence of inhibitors
-
Zbl 0856.92010
-
BYRNE, H. & CHAPLAIN, M. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135 (1996), 187-216. Zbl 0856.92010
-
(1996)
Math. Biosci.
, vol.135
, pp. 187-216
-
-
Byrne, H.1
Chaplain, M.2
-
9
-
-
0031320752
-
Free boundary value problems associated with growth and development of multicellular spheroids
-
Zbl 0906.92016 MR 99c:92020
-
BYRNE, H. & CHAPLAIN, M. Free boundary value problems associated with growth and development of multicellular spheroids. European J. Appl. Math. 8 (1997), 639-658. Zbl 0906.92016 MR 99c:92020
-
(1997)
European J. Appl. Math.
, vol.8
, pp. 639-658
-
-
Byrne, H.1
Chaplain, M.2
-
10
-
-
0036584916
-
Analysis of a mathematical model for the growth of tumors under the action of external inhibitors
-
Zbl pre01773159 MR 1 908 130
-
CUI, S. Analysis of a mathematical model for the growth of tumors under the action of external inhibitors. J. Math. Biol. 44 (2002), 395-426. Zbl pre01773159 MR 1 908 130
-
(2002)
J. Math. Biol.
, vol.44
, pp. 395-426
-
-
Cui, S.1
-
11
-
-
0034040582
-
Analysis of a mathematical model of the effect of inhibitors on the growth of tumors
-
Zbl 0998.92022 MR 2001d:92006
-
CUI, S. & FRIEDMAN, A. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164 (2000), 103-137. Zbl 0998.92022 MR 2001d:92006
-
(2000)
Math. Biosci.
, vol.164
, pp. 103-137
-
-
Cui, S.1
Friedman, A.2
-
12
-
-
0035869870
-
Analysis of a mathematical model of the growth of necrotic tumors
-
Zbl 0984.35169 MR 2002a:35195
-
CUI, S. & FRIEDMAN, A. Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255 (2001), 636-677. Zbl 0984.35169 MR 2002a:35195
-
(2001)
J. Math. Anal. Appl.
, vol.255
, pp. 636-677
-
-
Cui, S.1
Friedman, A.2
-
13
-
-
85032191038
-
A free boundary problem for a singular system of differential equations: An application to a model of tumor growth
-
to appear
-
CUI, S. & FRIEDMAN, A. A free boundary problem for a singular system of differential equations: an application to a model of tumor growth. Trans. Amer. Math. Soc., to appear.
-
Trans. Amer. Math. Soc.
-
-
Cui, S.1
Friedman, A.2
-
14
-
-
0033094895
-
Analysis of a mathematical model for the growth of tumors
-
Zbl 0944.92018 MR 2001f:92011
-
FRIEDMAN, A. & REITICH, F. Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38 (1999), 262-284. Zbl 0944.92018 MR 2001f:92011
-
(1999)
J. Math. Biol.
, vol.38
, pp. 262-284
-
-
Friedman, A.1
Reitich, F.2
-
15
-
-
0242588180
-
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth
-
Zbl 0983.35019 MR 2002a:35208
-
FRIEDMAN, A. & REITICH, F. Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Amer. Math. Soc. 353 (2000), 1587-1634. Zbl 0983.35019 MR 2002a:35208
-
(2000)
Trans. Amer. Math. Soc.
, vol.353
, pp. 1587-1634
-
-
Friedman, A.1
Reitich, F.2
-
16
-
-
0035634058
-
On the existence of spatially patterned dormant malignancies in the model for the growth of non-necrotic vascular tumor
-
MR 2002c:92012
-
FRIEDMAN, A. & REITICH, F. On the existence of spatially patterned dormant malignancies in the model for the growth of non-necrotic vascular tumor. Math. Models Methods Appl. Sci. 11 (2001), 601-625. MR 2002c:92012
-
(2001)
Math. Models Methods Appl. Sci.
, vol.11
, pp. 601-625
-
-
Friedman, A.1
Reitich, F.2
-
17
-
-
0000128125
-
Models for the growth of solid tumor by diffusion
-
Zbl 0257.92001
-
GREENSPAN, H. Models for the growth of solid tumor by diffusion. Studies Appl. Math. 51 (1972), 317-340. Zbl 0257.92001
-
(1972)
Studies Appl. Math.
, vol.51
, pp. 317-340
-
-
Greenspan, H.1
-
18
-
-
0017198676
-
On the growth and stability of cell cultures and solid tumors
-
MR 55 #2183
-
GREENSPAN, H. On the growth and stability of cell cultures and solid tumors. J. Theoret. Biol. 56 (1976), 229-242. MR 55 #2183
-
(1976)
J. Theoret. Biol.
, vol.56
, pp. 229-242
-
-
Greenspan, H.1
-
19
-
-
0027604157
-
Cell migration in multicell spheroids: Swimming against the tide
-
Zbl 0765.92015
-
MCELWAIN, D. & PETTET, G. Cell migration in multicell spheroids: swimming against the tide. Bull. Math. Biol. 55 (1993), 655-674. Zbl 0765.92015
-
(1993)
Bull. Math. Biol.
, vol.55
, pp. 655-674
-
-
Mcelwain, D.1
Pettet, G.2
-
20
-
-
0034977131
-
The migration of cells in multicell tumor spheroids
-
Zbl 0765.92015
-
PETTET, G., PLEASE, C., TINDALL, M., & MCELWAIN, D. The migration of cells in multicell tumor spheroids. Bull. Math. Biol. 63 (2001), 231-257. Zbl 0765.92015
-
(2001)
Bull. Math. Biol.
, vol.63
, pp. 231-257
-
-
Pettet, G.1
Please, C.2
Tindall, M.3
Mcelwain, D.4
-
22
-
-
0035480791
-
A new mathematical model for avascular tumor growth
-
Zbl 0990.92021
-
SHERRAT, J. & CHAPLAIN, M. A new mathematical model for avascular tumor growth. J. Math. Biol. 43 (2001), 291-312. Zbl 0990.92021
-
(2001)
J. Math. Biol.
, vol.43
, pp. 291-312
-
-
Sherrat, J.1
Chaplain, M.2
-
23
-
-
0032838793
-
Modelling the internalisation of labelled cells in tumor spheroids
-
THOMPSON, K. & BYRNE, H. Modelling the internalisation of labelled cells in tumor spheroids. Bull. Math. Biol. 61 (1999), 601-623.
-
(1999)
Bull. Math. Biol.
, vol.61
, pp. 601-623
-
-
Thompson, K.1
Byrne, H.2
-
24
-
-
0002484583
-
Mathematical modelling of avascular-Tumor growth II: Modelling growth saturation
-
Zbl 0943.92019
-
WARD, J.& KING, J. Mathematical modelling of avascular-Tumor growth II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 15 (1998), 1-42. Zbl 0943.92019
-
(1998)
IMA J. Math. Appl. Med. Biol.
, vol.15
, pp. 1-42
-
-
Ward, J.1
King, J.2
|