-
1
-
-
0022799748
-
A simplified mathematical model of tumor growth
-
Adam J. A. A simplified mathematical model of tumor growth. Math. Biosci. 81:1986;229-244.
-
(1986)
Math. Biosci.
, vol.81
, pp. 229-244
-
-
Adam J., A.1
-
2
-
-
0023518620
-
A mathematical model of tumor growth. II. Effects of geometry and spatial nonuniformity on stability
-
Adam J. A. A mathematical model of tumor growth. II. Effects of geometry and spatial nonuniformity on stability. Math. Biosci. 86:1987;183-211.
-
(1987)
Math. Biosci.
, vol.86
, pp. 183-211
-
-
Adam J., A.1
-
4
-
-
0027395356
-
A qualitative analysis of some models of tissue growth
-
Britton N. F., Chaplain M. A. J. A qualitative analysis of some models of tissue growth. Math. Biosci. 113:1993;77-89.
-
(1993)
Math. Biosci.
, vol.113
, pp. 77-89
-
-
Britton N., F.1
Chaplain M. A., J.2
-
5
-
-
0030822132
-
The effect of time delays on the dynamics of a vascular tumor growth
-
Byrne N. M. The effect of time delays on the dynamics of a vascular tumor growth. Math. Biosci. 144:1997;83-117.
-
(1997)
Math. Biosci.
, vol.144
, pp. 83-117
-
-
Byrne N., M.1
-
6
-
-
0028790729
-
Growth of nonnecrotic tumors in the presence and absence of inhibitors
-
Byrne N. M., Chaplain M. A. J. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130:1995;151-181.
-
(1995)
Math. Biosci.
, vol.130
, pp. 151-181
-
-
Byrne N., M.1
Chaplain M. A., J.2
-
7
-
-
0030586186
-
Growth of necrotic tumors in the presence and absence of inhibitors
-
Byrne N. M., Chaplain M. A. J. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135:1996;187-216.
-
(1996)
Math. Biosci.
, vol.135
, pp. 187-216
-
-
Byrne N., M.1
Chaplain M. A., J.2
-
8
-
-
0034040582
-
Analysis of a mathematical model of the effect of inhibitors on the growth of tumors
-
Cui S., Friedman A. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164:2000;103-137.
-
(2000)
Math. Biosci.
, vol.164
, pp. 103-137
-
-
Cui, S.1
Friedman, A.2
-
9
-
-
0000085314
-
Free boundary problems for parabolic equations. I. Melting of solids
-
Friedman A. Free boundary problems for parabolic equations. I. Melting of solids. J. Math. Mech. 1959;499-518.
-
(1959)
J. Math. Mech.
, pp. 499-518
-
-
Friedman, A.1
-
12
-
-
0033094895
-
Analysis of a mathematical model for the growth of tumors
-
Friedman A., Reitich F. Analysis of a mathematical model for the growth of tumors. J. Math. Biology. 38:1999;262-284.
-
(1999)
J. Math. Biology
, vol.38
, pp. 262-284
-
-
Friedman, A.1
Reitich, F.2
-
13
-
-
0000128125
-
Models for the growth of a solid tumor by diffusion
-
Greenspan H. P. Models for the growth of a solid tumor by diffusion. Studies Appl. Math. 52:1972;317-340.
-
(1972)
Studies Appl. Math.
, vol.52
, pp. 317-340
-
-
Greenspan H., P.1
-
15
-
-
0007063842
-
A new proof of the infinite differentiability of the free boundary in the Stefan problem
-
Schaeffer D. G. A new proof of the infinite differentiability of the free boundary in the Stefan problem. J. Differential Equations. 20:1976;266-269.
-
(1976)
J. Differential Equations
, vol.20
, pp. 266-269
-
-
Schaeffer D., G.1
|