메뉴 건너뛰기




Volumn 255, Issue 2, 2001, Pages 636-677

Analysis of a mathematical model of the growth of necrotic tumors

Author keywords

Free boundary problems; Necrotic; Parabolic equations; Tumor

Indexed keywords


EID: 0035869870     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.2000.7306     Document Type: Article
Times cited : (95)

References (15)
  • 1
    • 0022799748 scopus 로고
    • A simplified mathematical model of tumor growth
    • Adam J. A. A simplified mathematical model of tumor growth. Math. Biosci. 81:1986;229-244.
    • (1986) Math. Biosci. , vol.81 , pp. 229-244
    • Adam J., A.1
  • 2
    • 0023518620 scopus 로고
    • A mathematical model of tumor growth. II. Effects of geometry and spatial nonuniformity on stability
    • Adam J. A. A mathematical model of tumor growth. II. Effects of geometry and spatial nonuniformity on stability. Math. Biosci. 86:1987;183-211.
    • (1987) Math. Biosci. , vol.86 , pp. 183-211
    • Adam J., A.1
  • 4
    • 0027395356 scopus 로고
    • A qualitative analysis of some models of tissue growth
    • Britton N. F., Chaplain M. A. J. A qualitative analysis of some models of tissue growth. Math. Biosci. 113:1993;77-89.
    • (1993) Math. Biosci. , vol.113 , pp. 77-89
    • Britton N., F.1    Chaplain M. A., J.2
  • 5
    • 0030822132 scopus 로고    scopus 로고
    • The effect of time delays on the dynamics of a vascular tumor growth
    • Byrne N. M. The effect of time delays on the dynamics of a vascular tumor growth. Math. Biosci. 144:1997;83-117.
    • (1997) Math. Biosci. , vol.144 , pp. 83-117
    • Byrne N., M.1
  • 6
    • 0028790729 scopus 로고
    • Growth of nonnecrotic tumors in the presence and absence of inhibitors
    • Byrne N. M., Chaplain M. A. J. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130:1995;151-181.
    • (1995) Math. Biosci. , vol.130 , pp. 151-181
    • Byrne N., M.1    Chaplain M. A., J.2
  • 7
    • 0030586186 scopus 로고    scopus 로고
    • Growth of necrotic tumors in the presence and absence of inhibitors
    • Byrne N. M., Chaplain M. A. J. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135:1996;187-216.
    • (1996) Math. Biosci. , vol.135 , pp. 187-216
    • Byrne N., M.1    Chaplain M. A., J.2
  • 8
    • 0034040582 scopus 로고    scopus 로고
    • Analysis of a mathematical model of the effect of inhibitors on the growth of tumors
    • Cui S., Friedman A. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164:2000;103-137.
    • (2000) Math. Biosci. , vol.164 , pp. 103-137
    • Cui, S.1    Friedman, A.2
  • 9
    • 0000085314 scopus 로고
    • Free boundary problems for parabolic equations. I. Melting of solids
    • Friedman A. Free boundary problems for parabolic equations. I. Melting of solids. J. Math. Mech. 1959;499-518.
    • (1959) J. Math. Mech. , pp. 499-518
    • Friedman, A.1
  • 12
    • 0033094895 scopus 로고    scopus 로고
    • Analysis of a mathematical model for the growth of tumors
    • Friedman A., Reitich F. Analysis of a mathematical model for the growth of tumors. J. Math. Biology. 38:1999;262-284.
    • (1999) J. Math. Biology , vol.38 , pp. 262-284
    • Friedman, A.1    Reitich, F.2
  • 13
    • 0000128125 scopus 로고
    • Models for the growth of a solid tumor by diffusion
    • Greenspan H. P. Models for the growth of a solid tumor by diffusion. Studies Appl. Math. 52:1972;317-340.
    • (1972) Studies Appl. Math. , vol.52 , pp. 317-340
    • Greenspan H., P.1
  • 15
    • 0007063842 scopus 로고
    • A new proof of the infinite differentiability of the free boundary in the Stefan problem
    • Schaeffer D. G. A new proof of the infinite differentiability of the free boundary in the Stefan problem. J. Differential Equations. 20:1976;266-269.
    • (1976) J. Differential Equations , vol.20 , pp. 266-269
    • Schaeffer D., G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.