-
1
-
-
0001587222
-
On sets of integers which contain no three terms in arithmetic progression
-
MR0018694 8:317d
-
F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. 32 (1946), 331-332. MR0018694 (8:317d)
-
(1946)
Proc. Nat. Acad. Sci
, vol.32
, pp. 331-332
-
-
Behrend, F.A.1
-
2
-
-
0033269755
-
-
J. Bourgain, On triples in arithmetic progression, Geom. Func. Anal. 9 (1999), 968-984. MR1726234 (2001h:11132)
-
J. Bourgain, On triples in arithmetic progression, Geom. Func. Anal. 9 (1999), 968-984. MR1726234 (2001h:11132)
-
-
-
-
3
-
-
41849146322
-
Roth's theorem on arithmetic progressions revisited
-
preprint
-
J. Bourgain, Roth's theorem on arithmetic progressions revisited, preprint.
-
-
-
Bourgain, J.1
-
4
-
-
84960611781
-
On some sequences of integers
-
P. Erdös and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261-264.
-
(1936)
J. London Math. Soc
, vol.11
, pp. 261-264
-
-
Erdös, P.1
Turán, P.2
-
5
-
-
51649169500
-
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressais
-
MR0498471 58:16583
-
H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressais, J. Analyse Math. 31 (1977), 204-256. MR0498471 (58:16583)
-
(1977)
J. Analyse Math
, vol.31
, pp. 204-256
-
-
Furstenberg, H.1
-
7
-
-
84966231440
-
The ergodic theoretical proof of Szemerédi's theorem
-
MR670131 84b:28016
-
H. Furstenberg, Y. Katznelson, and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc. 7 (1982), 527-552. MR670131 (84b:28016)
-
(1982)
Bull. Amer. Math. Soc
, vol.7
, pp. 527-552
-
-
Furstenberg, H.1
Katznelson, Y.2
Ornstein, D.3
-
9
-
-
41849092109
-
-
D. A. Goldston, J. Pintz. and C.Y. Yildirim. Small gaps between primes II, preprint. See MR2222213 (2007a:11135)
-
D. A. Goldston, J. Pintz. and C.Y. Yildirim. Small gaps between primes II, preprint. See MR2222213 (2007a:11135)
-
-
-
-
10
-
-
0031285884
-
Lower bounds of tower type for Szemerédi's uniformity lemma
-
MR1445389 98a:11015
-
T. Gowers, Lower bounds of tower type for Szemerédi's uniformity lemma, Geom. Func. Anal. 7 (1997), 322-337. MR1445389 (98a:11015)
-
(1997)
Geom. Func. Anal
, vol.7
, pp. 322-337
-
-
Gowers, T.1
-
11
-
-
0032361262
-
-
T. Gowers, A new proof of Szemerédi's theorem for arithmetic progressions of length four, Geom. Func. Anal. 8 (1998), 529-551. MR1631259 (2000d:11019)
-
T. Gowers, A new proof of Szemerédi's theorem for arithmetic progressions of length four, Geom. Func. Anal. 8 (1998), 529-551. MR1631259 (2000d:11019)
-
-
-
-
12
-
-
0038229069
-
The two cultures of mathematics
-
V. Arnold, M. Atiyah, P. Lax, B. Mazur, Editors, American Mathematical Society, MR1754762 2000m:00017
-
T. Gowers, The two cultures of mathematics, in: Mathematics: Frontiers and Perspectives, International Mathematical Union, V. Arnold, M. Atiyah, P. Lax, B. Mazur, Editors, American Mathematical Society, 2000. MR1754762 (2000m:00017)
-
(2000)
Mathematics: Frontiers and Perspectives, International Mathematical Union
-
-
Gowers, T.1
-
13
-
-
0035618488
-
-
T. Gowers, A new proof of Szemeredi's theorem, Geom. Func. Anal. 11 (2001), 465-588. MR1844079 (2002k:11014)
-
T. Gowers, A new proof of Szemeredi's theorem, Geom. Func. Anal. 11 (2001), 465-588. MR1844079 (2002k:11014)
-
-
-
-
14
-
-
29744456824
-
Quasirandomness, counting and regularity for 3-uniform hypergraphs
-
MR2195580
-
T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), nos. 1-2, 143-184. MR2195580
-
(2006)
Combin. Probab. Comput
, vol.15
, Issue.1-2
, pp. 143-184
-
-
Gowers, T.1
-
15
-
-
30444444051
-
-
B.J. Green, Roth's theorem in the primes, Ann. of Math. 161 (2005), 1609-1636. MR2180408 (2007a:11136)
-
B.J. Green, Roth's theorem in the primes, Ann. of Math. 161 (2005), 1609-1636. MR2180408 (2007a:11136)
-
-
-
-
16
-
-
23744478411
-
-
B.J. Green, A Szemerédi-type regularity lemma in abelian groups, Geom. Func. Anal. 15 (2005), no. 2, 340-376. MR2153903 (2006e:11029)
-
B.J. Green, A Szemerédi-type regularity lemma in abelian groups, Geom. Func. Anal. 15 (2005), no. 2, 340-376. MR2153903 (2006e:11029)
-
-
-
-
17
-
-
84871130932
-
The primes contain arbitrarily long arithmetic progressions
-
to appear in
-
B.J. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, to appear in Ann. of Math.
-
Ann. of Math
-
-
Green, B.J.1
Tao, T.2
-
18
-
-
0000986903
-
Regularity and positional games
-
MR0143712 26:1265
-
A.W. Hales and R.I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR0143712 (26:1265)
-
(1963)
Trans. Amer. Math. Soc
, vol.106
, pp. 222-229
-
-
Hales, A.W.1
Jewett, R.I.2
-
19
-
-
84959787666
-
Three primes and an almost prime in arithmetic progression
-
MR616545 82j:10074
-
D.K. Heath-Brown, Three primes and an almost prime in arithmetic progression, J. London Math. Soc. (2) 23 (1981), 396-414. MR616545 (82j:10074)
-
(1981)
J. London Math. Soc. (2)
, vol.23
, pp. 396-414
-
-
Heath-Brown, D.K.1
-
20
-
-
23444458042
-
-
B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, Ann. of Math. 161 (2005), 397-488. MR2150389 (2007b:37004)
-
B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, Ann. of Math. 161 (2005), 397-488. MR2150389 (2007b:37004)
-
-
-
-
21
-
-
0030444601
-
Arithmetic progressions of length three in subsets of a random set
-
MR1379396 97b:11011
-
Y. Kohayakawa, T. Luczak, and V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith. 75 (1996), no. 2, 133-163. MR1379396 (97b:11011)
-
(1996)
Acta Arith
, vol.75
, Issue.2
, pp. 133-163
-
-
Kohayakawa, Y.1
Luczak, T.2
Rödl, V.3
-
22
-
-
33645005241
-
-
B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 113-179. MR2198495 (2007d:05084)
-
B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 113-179. MR2198495 (2007d:05084)
-
-
-
-
23
-
-
84960601644
-
On a problem of formal logic
-
F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-285.
-
(1930)
Proc. London Math. Soc
, vol.30
, pp. 264-285
-
-
Ramsey, F.P.1
-
25
-
-
11144270528
-
-
V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algorithms 25 (2004), no. 1, 1-42. MR2069663 (2005d:05144)
-
V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algorithms 25 (2004), no. 1, 1-42. MR2069663 (2005d:05144)
-
-
-
-
26
-
-
33644942504
-
-
V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 180-194. MR2198496 (2006j:05099)
-
V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 180-194. MR2198496 (2006j:05099)
-
-
-
-
27
-
-
0040569756
-
On certain sets of integers
-
MR005185314:536g
-
K.F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 245-252. MR0051853(14:536g)
-
(1953)
J. London Math. Soc
, vol.28
, pp. 245-252
-
-
Roth, K.F.1
-
28
-
-
0039976929
-
Irregularities of sequences relative to arithmetic progressions
-
MR0369311 51:5546
-
K.F. Roth, Irregularities of sequences relative to arithmetic progressions, IV. Period. Math. Hungar. 2 (1972), 301-326. MR0369311 (51:5546)
-
(1972)
IV. Period. Math. Hungar
, vol.2
, pp. 301-326
-
-
Roth, K.F.1
-
29
-
-
0000724028
-
Triple systems with no six points carrying three triangles
-
MH519318 80c:05116
-
I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Colloq. Math. Soc. J. Bolyai 18 (1978), 939-945. MH519318 (80c:05116)
-
(1978)
Colloq. Math. Soc. J. Bolyai
, vol.18
, pp. 939-945
-
-
Ruzsa, I.1
Szemerédi, E.2
-
30
-
-
84968502319
-
Primitive recursive bounds for van der Waerden numbers
-
MR929498 89a:05017
-
S. Shelah, Primitive recursive bounds for van der Waerden numbers, J . Amer. Math. Soc. 1 (1988), 683-697. MR929498 (89a:05017)
-
(1988)
J . Amer. Math. Soc
, vol.1
, pp. 683-697
-
-
Shelah, S.1
-
31
-
-
0006377805
-
On sets of integers containing no four elements in arithmetic progression
-
MR0245555 39:6861
-
E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89-104. MR0245555 (39:6861)
-
(1969)
Acta Math. Acad. Sci. Hungar
, vol.20
, pp. 89-104
-
-
Szemerédi, E.1
-
32
-
-
0001549458
-
On sets of integers containing no k elements in arithmetic progression
-
MR0369312 51:5547
-
E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299-345. MR0369312 (51:5547)
-
(1975)
Acta Arith
, vol.27
, pp. 299-345
-
-
Szemerédi, E.1
-
33
-
-
84878102737
-
The dichotomy between structure and randomness, arithmetic progressions, and the primes
-
to appear
-
T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, to appear, ICM 2006 proceedings.
-
ICM 2006 proceedings
-
-
Tao, T.1
-
34
-
-
33750924975
-
-
T. Tao, A quantitative ergodic theory proof of Szemerédi's theorem, Electron. J. Combin. 13 (2006), no. 1, Research Paper 99, 49 pp. (electronic). MR2274314
-
T. Tao, A quantitative ergodic theory proof of Szemerédi's theorem, Electron. J. Combin. 13 (2006), no. 1, Research Paper 99, 49 pp. (electronic). MR2274314
-
-
-
-
35
-
-
41849141474
-
-
T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006. MR2289012
-
T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006. MR2289012
-
-
-
-
36
-
-
0002996391
-
Über Summen von Primzahlen und Primzahlquadraten
-
MR1513216
-
J.G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), 1-50. MR1513216
-
(1939)
Math. Ann
, vol.116
, pp. 1-50
-
-
van der Corput, J.G.1
-
37
-
-
0000590051
-
Beweis einer Baudetschen Vermutung
-
B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212-216.
-
(1927)
Nieuw. Arch. Wisk
, vol.15
, pp. 212-216
-
-
van der Waerden, B.L.1
-
38
-
-
84980078034
-
-
E. Wigner, The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Comm. Pure Appl. Math. 13 (1960). MR0824292
-
E. Wigner, The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Comm. Pure Appl. Math. 13 (1960). MR0824292
-
-
-
-
39
-
-
33750913592
-
Universal characteristic factors and Furstenberg averages
-
MR2257397
-
T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53-97. MR2257397
-
(2007)
J. Amer. Math. Soc
, vol.20
, pp. 53-97
-
-
Ziegler, T.1
|