-
1
-
-
0036437231
-
Testing subgraphs in large graphs
-
[A]. Random Structures and Algorithms (Poznan)
-
[A] N. ALON, Testing subgraphs in large graphs, Random Structures and Algorithms (Poznan, 2001). Random Structures Algorithms 21:3-4 (2002), 359-370.
-
(2001)
Random Structures Algorithms
, vol.21
, Issue.3-4
, pp. 359-370
-
-
Alon, N.1
-
3
-
-
0001587222
-
On sets of integers which contain no three elements in arithmetic progression
-
[B]
-
[B] F.A. BEHREND, On sets of integers which contain no three elements in arithmetic progression, Proc. Nat. Acad. Sci. 23 (1946), 331-332.
-
(1946)
Proc. Nat. Acad. Sci.
, vol.23
, pp. 331-332
-
-
Behrend, F.A.1
-
4
-
-
23744459187
-
-
[BeHK], with an appendix by I.Z. RUZSA, preprint
-
[BeHK] V. BERGELSON, B. HOST, B. KRA, Multiple recurrence and nilsequences, with an appendix by I.Z. RUZSA, preprint.
-
Multiple Recurrence and Nilsequences
-
-
Bergelson, V.1
Host, B.2
Kra, B.3
-
6
-
-
0033269755
-
On triples in arithmetic progression
-
[Bou]
-
[Bou] J. BOURGAIN, On triples in arithmetic progression, GAFA, Geom. funct. anal. 9:5 (1999), 968-984.
-
(1999)
GAFA, Geom. Funct. Anal.
, vol.9
, Issue.5
, pp. 968-984
-
-
Bourgain, J.1
-
8
-
-
0039877138
-
On subsets of abelian groups with no 3-term arithmetic progression
-
[FGR]
-
[FGR] P. FRANKL, R.L. GRAHAM, V. RÖDL, On subsets of abelian groups with no 3-term arithmetic progression, J. Combin. Theory Ser. A 45:1 (1987), 157-161.
-
(1987)
J. Combin. Theory Ser. A
, vol.45
, Issue.1
, pp. 157-161
-
-
Frankl, P.1
Graham, R.L.2
Rödl, V.3
-
9
-
-
0242330685
-
Extremal problems on set systems
-
[FR]
-
[FR] P. FRANKL, V. RÖDL, Extremal problems on set systems, Random Structures Algorithms 20:2 (2002), 131-164.
-
(2002)
Random Structures Algorithms
, vol.20
, Issue.2
, pp. 131-164
-
-
Frankl, P.1
Rödl, V.2
-
10
-
-
0031285884
-
Lower bounds of tower type for Szemerédi's uniformity lemma
-
[G1]
-
[G1] W.T. GOWERS, Lower bounds of tower type for Szemerédi's uniformity lemma, GAFA, Geom. funct. anal. 7:2 (1997), 322-337.
-
(1997)
GAFA, Geom. Funct. Anal.
, vol.7
, Issue.2
, pp. 322-337
-
-
Gowers, W.T.1
-
11
-
-
0032361262
-
A new proof of Szemerédi's theorem for progressions of length four
-
[G2]
-
[G2] W.T. GOWERS, A new proof of Szemerédi's theorem for progressions of length four, GAFA, Geom. funct. anal. 8:3 (1998), 529-551.
-
(1998)
GAFA, Geom. Funct. Anal.
, vol.8
, Issue.3
, pp. 529-551
-
-
Gowers, W.T.1
-
12
-
-
23744445492
-
Spectral structure of sets of integers
-
[Gr1], Fourier Analysis and Convexity, Birkhäuser
-
[Gr1] B.J. GREEN, Spectral structure of sets of integers, Fourier Analysis and Convexity, Appl. Numer. Harmon. Anal., Birkhäuser (2004), 83-96.
-
(2004)
Appl. Numer. Harmon. Anal.
, pp. 83-96
-
-
Green, B.J.1
-
13
-
-
10044282968
-
The Cameron-Erdös conjecture
-
[Gr2]
-
[Gr2] B.J. GREEN, The Cameron-Erdös conjecture, Bull. London Math. Soc. 36:6 (2004), 769-778.
-
(2004)
Bull. London Math. Soc.
, vol.36
, Issue.6
, pp. 769-778
-
-
Green, B.J.1
-
14
-
-
34548451175
-
Finite field models in additive combinatorics
-
[Gr3], to appear
-
[Gr3] B.J. GREEN, Finite field models in additive combinatorics, Surveys in Combinatorics 2005, to appear.
-
(2005)
Surveys in Combinatorics
-
-
Green, B.J.1
-
15
-
-
4344669764
-
Counting sumsets and sum-free sets modulo a prime
-
[GrR1]
-
[GrR1] B.J. GREEN, I.Z. RUZSA, Counting sumsets and sum-free sets modulo a prime, Studia Sci. Math. Hungar. 41:3 (2004), 285-293.
-
(2004)
Studia Sci. Math. Hungar.
, vol.41
, Issue.3
, pp. 285-293
-
-
Green, B.J.1
Ruzsa, I.Z.2
-
16
-
-
23744479316
-
Counting sum-free sets in abelian groups
-
[GrR2], to appear
-
[GrR2] B.J. GREEN, I.Z. RUZSA, Counting sum-free sets in abelian groups, Israel J. Math., to appear.
-
Israel J. Math.
-
-
Green, B.J.1
Ruzsa, I.Z.2
-
17
-
-
0000501688
-
Szemerédi's regularity lemma and its applications in graph theory
-
[KS] (Keszthely)
-
[KS] J. KOMLÓS, M. SIMONOVITS, Szemerédi's regularity lemma and its applications in graph theory, Combinatorics, Paul Erdös is eighty 2 (Keszthely, 1993),
-
(1993)
Combinatorics, Paul Erdös Is Eighty
, vol.2
-
-
Komlós, J.1
Simonovits, M.2
-
18
-
-
0000501688
-
-
János Bolyai Math. Soc., Budapest
-
Bolyai Soc. Math. Stud. 2, János Bolyai Math. Soc., Budapest (1996), 295-352.
-
(1996)
Bolyai Soc. Math. Stud.
, vol.2
, pp. 295-352
-
-
-
19
-
-
58149209289
-
On subsets of finite abelian groups with no 3-term arithmetic progressions
-
[M]
-
[M] R. MESHULAM, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Combin. Theory Ser. A 71:1 (1995), 168-172.
-
(1995)
J. Combin. Theory Ser. A
, vol.71
, Issue.1
, pp. 168-172
-
-
Meshulam, R.1
-
21
-
-
84963060265
-
On certain sets of integers
-
[R]
-
[R] K.F. ROTH, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
-
(1953)
J. London Math. Soc.
, vol.28
, pp. 104-109
-
-
Roth, K.F.1
-
22
-
-
0002077527
-
Solving a linear equation in a set of integers I
-
[Ru1]
-
[Ru1] I.Z. RUZSA, Solving a linear equation in a set of integers I, Acta. Arith. 65:3 (1993), 259-282.
-
(1993)
Acta. Arith.
, vol.65
, Issue.3
, pp. 259-282
-
-
Ruzsa, I.Z.1
-
23
-
-
0005877097
-
An analog of Freiman's theorem in groups, Structure theory of set addition
-
[Ru2]
-
[Ru2] I.Z. RUZSA, An analog of Freiman's theorem in groups, Structure theory of set addition. Astérisque 258:xv (1999), 323-326.
-
(1999)
Astérisque
, vol.258
, Issue.15
, pp. 323-326
-
-
Ruzsa, I.Z.1
-
24
-
-
0000724028
-
Triple systems with no six points carrying three triangles
-
[RuSz] (Keszthely)
-
[RuSz] I.Z. RUZSA, E. SZEMERÉDI, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II,
-
(1976)
Combinatorics Proc. Fifth Hungarian Colloq.
, vol.2
-
-
Ruzsa, I.Z.1
Szemerédi, E.2
-
25
-
-
0000724028
-
-
North-Holland, Amsterdam-New York
-
North-Holland, Amsterdam-New York. Colloq. Math. Soc. János Bolyai 18 (1978), 939-945,
-
(1978)
Colloq. Math. Soc. János Bolyai
, vol.18
, pp. 939-945
-
-
-
26
-
-
0002572651
-
Regular partitions of graphs, Problèmes combinatoires et théorie des graphes
-
[Sz], Colloq. Internat. CNRS, Univ. Orsay, Orsay, CNRS, Paris
-
[Sz] E. SZEMERÉDI, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, 260, CNRS, Paris (1978), 399-401.
-
(1976)
Colloq. Internat. CNRS
, vol.260
, pp. 399-401
-
-
Szemerédi, E.1
-
27
-
-
23744472789
-
-
[T] from Math 254A
-
[T] T.C. TAO, Lecture notes 5 from Math 254A, available at http://www.math.ucla.edu/~tao/254a.1.03w/notes5.dvi
-
Lecture Notes
, vol.5
-
-
Tao, T.C.1
|