메뉴 건너뛰기




Volumn 15, Issue 1-2, 2006, Pages 143-184

Quasirandomness, counting and regularity for 3-uniform hypergraphs

Author keywords

[No Author keywords available]

Indexed keywords

DIGITAL ARITHMETIC; RANDOM PROCESSES; THEOREM PROVING;

EID: 29744456824     PISSN: 09635483     EISSN: 14692163     Source Type: Journal    
DOI: 10.1017/S0963548305007236     Document Type: Article
Times cited : (155)

References (16)
  • 4
    • 0003842418 scopus 로고
    • The uniformity lemma for hypergraphs
    • Frankl, P. and Rödl, V. (1992) The uniformity lemma for hypergraphs. Graphs Combin. 8 309-312.
    • (1992) Graphs Combin. , vol.8 , pp. 309-312
    • Frankl, P.1    Rödl, V.2
  • 5
    • 0242330685 scopus 로고    scopus 로고
    • Extremal problems on set systems
    • Frankl, P. and Rödl, V. (2002) Extremal problems on set systems. Random Struct. Alg. 20 131-164.
    • (2002) Random Struct. Alg. , vol.20 , pp. 131-164
    • Frankl, P.1    Rödl, V.2
  • 6
    • 51249184670 scopus 로고
    • An ergodic Szemerédi theorem for commuting transformations
    • Furstenberg, H. and Katznelson, Y. (1978) An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math. 34 275-291.
    • (1978) J. Analyse Math. , vol.34 , pp. 275-291
    • Furstenberg, H.1    Katznelson, Y.2
  • 8
    • 0032361262 scopus 로고    scopus 로고
    • A new proof of Szemerédi's theorem for arithmetic progressions of length four
    • Gowers, W. T. (1998) A new proof of Szemerédi's theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 529-551.
    • (1998) Geom. Funct. Anal. , vol.8 , pp. 529-551
    • Gowers, W.T.1
  • 9
    • 0035618488 scopus 로고    scopus 로고
    • A new proof of Szemerédi's theorem
    • Gowers, W. T. (2001) A new proof of Szemerédi's theorem. Geom. Funct. Anal. 11 465-588.
    • (2001) Geom. Funct. Anal. , vol.11 , pp. 465-588
    • Gowers, W.T.1
  • 11
    • 84871121603 scopus 로고    scopus 로고
    • The counting lemma for regular k-uniform hypergraphs
    • to appear
    • Nagle, B., Rödl, V. and Schacht, M. The counting lemma for regular k-uniform hypergraphs. Random Struct. Alg., to appear.
    • Random Struct. Alg.
    • Nagle, B.1    Rödl, V.2    Schacht, M.3
  • 12
    • 0346703825 scopus 로고
    • Some developments in Ramsey theory
    • (Kyoto, 1990), Math. Soc. Japan, Tokyo
    • Rödl, V. (1991) Some developments in Ramsey theory. In Proc. International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, pp. 1455-1466.
    • (1991) Proc. International Congress of Mathematicians , vol.1-2 , pp. 1455-1466
    • Rödl, V.1
  • 13
    • 0000724028 scopus 로고
    • Triple systems with no six points carrying three triangles
    • Proc. Fifth Hungarian Colloq., Keszthely, 1976
    • Ruzsa, I. Z. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 939-945.
    • (1978) Combinatorics , vol.2 , pp. 939-945
    • Ruzsa, I.Z.1    Szemerédi, E.2
  • 14
    • 29644448368 scopus 로고    scopus 로고
    • Note on a generalization of Roth's theorem
    • Discrete and Computational Geometry, Springer, Berlin
    • Solymosi, J. (2003) Note on a generalization of Roth's theorem. In Discrete and Computational Geometry, Vol. 25 of Algorithms and Combinatorics, Springer, Berlin, pp. 825-827.
    • (2003) Algorithms and Combinatorics , vol.25 , pp. 825-827
    • Solymosi, J.1
  • 15
    • 3142531055 scopus 로고    scopus 로고
    • A note on a question of Erdos and Graham
    • Solymosi, J. (2004) A note on a question of Erdos and Graham. Combin. Probab. Comput. 13 263-267.
    • (2004) Combin. Probab. Comput. , vol.13 , pp. 263-267
    • Solymosi, J.1
  • 16
    • 77956892870 scopus 로고
    • Pseudo-random graphs
    • Proc. Random Graphs, Poznán 1985 (M. Karonski, ed.)
    • Thomason, A. G. (1987) Pseudo-random graphs. In Proc. Random Graphs, Poznán 1985 (M. Karonski, ed.), Ann. Discrete Math. 33 307-331.
    • (1987) Ann. Discrete Math. , vol.33 , pp. 307-331
    • Thomason, A.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.