메뉴 건너뛰기




Volumn 452, Issue 7187, 2008, Pages 604-609

A nuclear receptor-like pathway regulating multidrug resistance in fungi

Author keywords

[No Author keywords available]

Indexed keywords

ANTIFUNGAL AGENT; CELL NUCLEUS RECEPTOR; CYCLOHEXIMIDE; DEXAMETHASONE; FLUCONAZOLE; GAL11P PROTEIN; GENE PRODUCT; KETOCONAZOLE; PDR1P PROTEIN; PREGNANE X RECEPTOR; RIFAMPICIN; UNCLASSIFIED DRUG; XENOBIOTIC AGENT;

EID: 41649118757     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature06836     Document Type: Article
Times cited : (266)

References (61)
  • 1
    • 24144451315 scopus 로고    scopus 로고
    • Changing patterns and trends in systemic fungal infections
    • Richardson, M. D. Changing patterns and trends in systemic fungal infections. J. Antimicrob. Chemother. 56, i5-i11 (2005).
    • (2005) J. Antimicrob. Chemother , vol.56
    • Richardson, M.D.1
  • 2
    • 33750137961 scopus 로고    scopus 로고
    • Developments in the treatment of candidiasis: More choices and new challenges
    • Aperis, G., Myriounis, N., Spanakis, E. K. & Mylonakis, E. Developments in the treatment of candidiasis: more choices and new challenges. Expert Opin. Investig. Drugs 15, 1319-1336 (2006).
    • (2006) Expert Opin. Investig. Drugs , vol.15 , pp. 1319-1336
    • Aperis, G.1    Myriounis, N.2    Spanakis, E.K.3    Mylonakis, E.4
  • 3
    • 33846466508 scopus 로고    scopus 로고
    • Epidemiology of invasive candidiasis: A persistent public health problem
    • Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133-163 (2007).
    • (2007) Clin. Microbiol. Rev , vol.20 , pp. 133-163
    • Pfaller, M.A.1    Diekema, D.J.2
  • 4
    • 3943093972 scopus 로고    scopus 로고
    • Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study
    • Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309-317 (2004).
    • (2004) Clin. Infect. Dis , vol.39 , pp. 309-317
    • Wisplinghoff, H.1
  • 5
    • 33744493394 scopus 로고    scopus 로고
    • Candida resistance and its clinical relevance
    • Klepser, M. E. Candida resistance and its clinical relevance. Pharmacotherapy 26, 68S-75S (2006).
    • (2006) Pharmacotherapy , vol.26
    • Klepser, M.E.1
  • 6
    • 33646049086 scopus 로고    scopus 로고
    • Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification
    • Sipos, G. & Kuchler, K. Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr. Drug Targets 7, 471-481 (2006).
    • (2006) Curr. Drug Targets , vol.7 , pp. 471-481
    • Sipos, G.1    Kuchler, K.2
  • 7
    • 0023603366 scopus 로고
    • The multidrug resistance gene PDR1 from Saccharomyces cerevisiae
    • Balzi, E. et al. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J. Biol. Chem. 262, 16871-16879 (1987).
    • (1987) J. Biol. Chem , vol.262 , pp. 16871-16879
    • Balzi, E.1
  • 8
    • 0026602838 scopus 로고
    • Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5
    • Meyers, S. et al. Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr. Genet. 21, 431-436 (1992).
    • (1992) Curr. Genet , vol.21 , pp. 431-436
    • Meyers, S.1
  • 9
    • 0028082188 scopus 로고
    • PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1
    • Balzi, E. et al. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J. Biol. Chem. 269, 2206-2214 (1994).
    • (1994) J. Biol. Chem , vol.269 , pp. 2206-2214
    • Balzi, E.1
  • 10
    • 0028276614 scopus 로고
    • Transcriptional control of the yeast PDR5 gene by the PDR3 gene product
    • Katzmann, D. J. et al. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol. Cell. Biol. 14, 4653-4661 (1994).
    • (1994) Mol. Cell. Biol , vol.14 , pp. 4653-4661
    • Katzmann, D.J.1
  • 11
    • 0027998450 scopus 로고
    • PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon
    • Delaveau, T. et al. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol. Gen. Genet. 244, 501-511 (1994).
    • (1994) Mol. Gen. Genet , vol.244 , pp. 501-511
    • Delaveau, T.1
  • 12
    • 0029073576 scopus 로고
    • Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane
    • Decottignies, A. et al. Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J. Biol. Chem. 270, 18150-18157 (1995).
    • (1995) J. Biol. Chem , vol.270 , pp. 18150-18157
    • Decottignies, A.1
  • 13
    • 0028807740 scopus 로고
    • Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae
    • Katzmann, D. J. et al. Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 6875-6883 (1995).
    • (1995) Mol. Cell. Biol , vol.15 , pp. 6875-6883
    • Katzmann, D.J.1
  • 14
    • 0000942202 scopus 로고    scopus 로고
    • PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs
    • van den Hazel, H. B. et al. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J. Biol. Chem. 274, 1934-1941 (1999).
    • (1999) J. Biol. Chem , vol.274 , pp. 1934-1941
    • van den Hazel, H.B.1
  • 15
    • 4143087157 scopus 로고    scopus 로고
    • Transcriptional control of multidrug resistance in the yeast Saccharomyces
    • Moye-Rowley, W. S. Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog. Nucleic Acid Res. Mol. Biol. 73, 251-279 (2003).
    • (2003) Prog. Nucleic Acid Res. Mol. Biol , vol.73 , pp. 251-279
    • Moye-Rowley, W.S.1
  • 16
    • 0442323489 scopus 로고    scopus 로고
    • Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase
    • Mamnun, Y. M., Schuller, C. & Kuchler, K. Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett. 559, 111-117 (2004).
    • (2004) FEBS Lett , vol.559 , pp. 111-117
    • Mamnun, Y.M.1    Schuller, C.2    Kuchler, K.3
  • 17
    • 5644271506 scopus 로고    scopus 로고
    • On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: Evidence for enhanced recruitment of coactivators and altered nucleosome structures
    • Gao, C., Wang, L., Milgrom, E. & Shen, W. C. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. J. Biol. Chem. 279, 42677-42686 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 42677-42686
    • Gao, C.1    Wang, L.2    Milgrom, E.3    Shen, W.C.4
  • 18
    • 14044253523 scopus 로고    scopus 로고
    • Early expression of yeast genes affected by chemical stress
    • Lucau-Danila, A. et al. Early expression of yeast genes affected by chemical stress. Mol. Cell. Biol. 25, 1860-1868 (2005).
    • (2005) Mol. Cell. Biol , vol.25 , pp. 1860-1868
    • Lucau-Danila, A.1
  • 19
    • 33751267207 scopus 로고    scopus 로고
    • Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5
    • Alenquer, M., Tenreiro, S. & Sa-Correia, I. Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5. FEMS Yeast Res. 6, 1130-1139 (2006).
    • (2006) FEMS Yeast Res , vol.6 , pp. 1130-1139
    • Alenquer, M.1    Tenreiro, S.2    Sa-Correia, I.3
  • 20
    • 33947545767 scopus 로고    scopus 로고
    • The central role of PDR1 in the foundation of yeast drug resistance
    • Fardeau, V. et al. The central role of PDR1 in the foundation of yeast drug resistance. J. Biol. Chem. 282, 5063-5074 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 5063-5074
    • Fardeau, V.1
  • 21
    • 4644254793 scopus 로고    scopus 로고
    • Azole resistance in Candida glabrata: Coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor
    • Vermitsky, J. P. & Edlind, T. D. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob. Agents Chemother. 48, 3773-3781 (2004).
    • (2004) Antimicrob. Agents Chemother , vol.48 , pp. 3773-3781
    • Vermitsky, J.P.1    Edlind, T.D.2
  • 22
    • 33645773419 scopus 로고    scopus 로고
    • Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants
    • Tsai, H. F., Krol, A. A., Sarti, K. E. & Bennett, J. E. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob. Agents Chemother. 50, 1384-1392 (2006).
    • (2006) Antimicrob. Agents Chemother , vol.50 , pp. 1384-1392
    • Tsai, H.F.1    Krol, A.A.2    Sarti, K.E.3    Bennett, J.E.4
  • 23
    • 33748042707 scopus 로고    scopus 로고
    • Pdr1 regulates multidrug resistance in Candida glabrata: Gene disruption and genome-wide expression studies
    • Vermitsky, J. P. et al. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol. Microbiol. 61, 704-722 (2006).
    • (2006) Mol. Microbiol , vol.61 , pp. 704-722
    • Vermitsky, J.P.1
  • 24
    • 0036799870 scopus 로고    scopus 로고
    • The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism
    • Kliewer, S. A., Goodwin, B. & Willson, T. M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23, 687-702 (2002).
    • (2002) Endocr. Rev , vol.23 , pp. 687-702
    • Kliewer, S.A.1    Goodwin, B.2    Willson, T.M.3
  • 26
  • 27
    • 18844451820 scopus 로고    scopus 로고
    • Mediator and the mechanism of transcriptional activation
    • Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235-239 (2005).
    • (2005) Trends Biochem. Sci , vol.30 , pp. 235-239
    • Kornberg, R.D.1
  • 28
    • 0030768053 scopus 로고    scopus 로고
    • Plasma membrane translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators, PDR1 and PDR3
    • Kean, L. S. et al. Plasma membrane translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators, PDR1 and PDR3. J. Cell Biol. 138, 255-270 (1997).
    • (1997) J. Cell Biol , vol.138 , pp. 255-270
    • Kean, L.S.1
  • 29
    • 28844501851 scopus 로고    scopus 로고
    • Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization
    • Gulshan, K., Rovinsky, S. A., Coleman, S. T. & Moye-Rowley, W. S. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280, 40524-40533 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 40524-40533
    • Gulshan, K.1    Rovinsky, S.A.2    Coleman, S.T.3    Moye-Rowley, W.S.4
  • 30
    • 1142302230 scopus 로고    scopus 로고
    • Linking transcriptional mediators via the GACKIX domain super family
    • Novatchkova, M. & Eisenhaber, F. Linking transcriptional mediators via the GACKIX domain super family. Curr. Biol. 14, R54-R55 (2004).
    • (2004) Curr. Biol , vol.14
    • Novatchkova, M.1    Eisenhaber, F.2
  • 31
    • 33747053907 scopus 로고    scopus 로고
    • An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis
    • Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700-704 (2006).
    • (2006) Nature , vol.442 , pp. 700-704
    • Yang, F.1
  • 32
    • 0034234237 scopus 로고    scopus 로고
    • CBP/p300 in cell growth, transformation, and development
    • Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553-1577 (2000).
    • (2000) Genes Dev , vol.14 , pp. 1553-1577
    • Goodman, R.H.1    Smolik, S.2
  • 33
    • 0037126308 scopus 로고    scopus 로고
    • A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis
    • Kasper, L. H. et al. A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419, 738-743 (2002).
    • (2002) Nature , vol.419 , pp. 738-743
    • Kasper, L.H.1
  • 34
    • 31144456712 scopus 로고    scopus 로고
    • Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development
    • Kasper, L. H. et al. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol. Cell. Biol. 26, 789-809 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 789-809
    • Kasper, L.H.1
  • 35
    • 0344936739 scopus 로고    scopus 로고
    • Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:coactivator interactions
    • Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752 (1997).
    • (1997) Cell , vol.91 , pp. 741-752
    • Radhakrishnan, I.1
  • 36
    • 0032191401 scopus 로고    scopus 로고
    • Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro
    • Näär, A. M. et al. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12, 3020-3031 (1998).
    • (1998) Genes Dev , vol.12 , pp. 3020-3031
    • Näär, A.M.1
  • 37
    • 0030012002 scopus 로고    scopus 로고
    • CBP as a transcriptional coactivator of c-Myb
    • Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528-540 (1996).
    • (1996) Genes Dev , vol.10 , pp. 528-540
    • Dai, P.1
  • 38
    • 1542358794 scopus 로고    scopus 로고
    • Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb
    • Zor, T., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J. Mol. Biol. 337, 521-534 (2004).
    • (2004) J. Mol. Biol , vol.337 , pp. 521-534
    • Zor, T.1    De Guzman, R.N.2    Dyson, H.J.3    Wright, P.E.4
  • 39
    • 29444458401 scopus 로고    scopus 로고
    • Structural basis for cooperative transcription factor binding to the CBP coactivator
    • De Guzman, R. N., Goto, N. K., Dyson, H. J. & Wright, P. E. Structural basis for cooperative transcription factor binding to the CBP coactivator. J. Mol. Biol. 355, 1005-1013 (2006).
    • (2006) J. Mol. Biol , vol.355 , pp. 1005-1013
    • De Guzman, R.N.1    Goto, N.K.2    Dyson, H.J.3    Wright, P.E.4
  • 40
    • 0037044756 scopus 로고    scopus 로고
    • Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain
    • Goto, N. K. et al. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J. Biol. Chem. 277, 43168-43174 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 43168-43174
    • Goto, N.K.1
  • 41
    • 0032161642 scopus 로고    scopus 로고
    • Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation
    • Parker, D. et al. Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol. Cell 2, 353-359 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 353-359
    • Parker, D.1
  • 42
    • 0032797948 scopus 로고    scopus 로고
    • Role of secondary structure in discrimination between constitutive and inducible activators
    • Parker, D. et al. Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601-5607 (1999).
    • (1999) Mol. Cell. Biol , vol.19 , pp. 5601-5607
    • Parker, D.1
  • 43
    • 0344527798 scopus 로고    scopus 로고
    • Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: Implications for mapping the boundaries of structural domains
    • Radhakrishnan, I. et al. Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. J. Mol. Biol. 287, 859-865 (1999).
    • (1999) J. Mol. Biol , vol.287 , pp. 859-865
    • Radhakrishnan, I.1
  • 45
    • 34250621370 scopus 로고    scopus 로고
    • Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: An 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing
    • Pfaller, M. A. et al. Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J. Clin. Microbiol. 45, 1735-1745 (2007).
    • (2007) J. Clin. Microbiol , vol.45 , pp. 1735-1745
    • Pfaller, M.A.1
  • 46
    • 33847285403 scopus 로고    scopus 로고
    • Antifungal chemical compounds identified using a C. elegans pathogenicity assay
    • Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens 3, e18 (2007).
    • (2007) PLoS Pathogens , vol.3
    • Breger, J.1
  • 47
    • 21544439035 scopus 로고    scopus 로고
    • Worms and flies as genetically tractable animal models to study host-pathogen interactions
    • Mylonakis, E. & Aballay, A. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect. Immun. 73, 3833-3841 (2005).
    • (2005) Infect. Immun , vol.73 , pp. 3833-3841
    • Mylonakis, E.1    Aballay, A.2
  • 48
    • 4944258189 scopus 로고    scopus 로고
    • Evolutionary genomics of nuclear receptors: From twenty-five ancestral genes to derived endocrine systems
    • Bertrand, S. et al. Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol. Biol. Evol. 21, 1923-1937 (2004).
    • (2004) Mol. Biol. Evol , vol.21 , pp. 1923-1937
    • Bertrand, S.1
  • 49
    • 33646470548 scopus 로고    scopus 로고
    • Fungi and animals may share a common ancestor to nuclear receptors
    • Phelps, C. et al. Fungi and animals may share a common ancestor to nuclear receptors. Proc. Natl Acad. Sci. USA 103, 7077-7081 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 7077-7081
    • Phelps, C.1
  • 50
    • 33745178477 scopus 로고    scopus 로고
    • A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans
    • Taubert, S., Van Gilst, M. R., Hansen, M. & Yamamoto, K. R. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev. 20, 1137-1149 (2006).
    • (2006) Genes Dev , vol.20 , pp. 1137-1149
    • Taubert, S.1    Van Gilst, M.R.2    Hansen, M.3    Yamamoto, K.R.4
  • 52
    • 0026562884 scopus 로고
    • Improved method for high efficiency transformation of intact yeast cells
    • Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425 (1992).
    • (1992) Nucleic Acids Res , vol.20 , pp. 1425
    • Gietz, D.1    St Jean, A.2    Woods, R.A.3    Schiestl, R.H.4
  • 53
    • 0032981335 scopus 로고    scopus 로고
    • Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata
    • Cormack, B. P. & Falkow, S. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151, 979-987 (1999).
    • (1999) Genetics , vol.151 , pp. 979-987
    • Cormack, B.P.1    Falkow, S.2
  • 54
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio, J. G., Viggiani, C. J., Gibson, D. G. & Aparicio, O. M. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4769-4780 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 55
    • 19544386804 scopus 로고    scopus 로고
    • The Arabidopsis F-box protein TIR1 is an auxin receptor
    • Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451 (2005).
    • (2005) Nature , vol.435 , pp. 446-451
    • Kepinski, S.1    Leyser, O.2
  • 56
    • 33847285403 scopus 로고    scopus 로고
    • Antifungal chemical compounds identified using a C. elegans pathogenicity assay
    • Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens 3, e18 (2007).
    • (2007) PLoS Pathogens , vol.3
    • Breger, J.1
  • 57
    • 0033794003 scopus 로고    scopus 로고
    • NMR spectroscopy: A multifaceted approach to macromolecular structure
    • Ferentz, A. E. & Wagner, G. NMR spectroscopy: a multifaceted approach to macromolecular structure. Q. Rev. Biophys. 33, 29-65 (2000).
    • (2000) Q. Rev. Biophys , vol.33 , pp. 29-65
    • Ferentz, A.E.1    Wagner, G.2
  • 58
    • 31444432912 scopus 로고    scopus 로고
    • Unambiguous assignment of NMR protein backbone signals with a time-shared triple-resonance experiment
    • Frueh, D. P., Arthanari, H. & Wagner, G. Unambiguous assignment of NMR protein backbone signals with a time-shared triple-resonance experiment. J. Biomol. NMR 33, 187-196 (2005).
    • (2005) J. Biomol. NMR , vol.33 , pp. 187-196
    • Frueh, D.P.1    Arthanari, H.2    Wagner, G.3
  • 59
    • 0034051065 scopus 로고    scopus 로고
    • A novel NMR method for determining the interfaces of large protein-protein complexes
    • Takahashi, H. et al. A novel NMR method for determining the interfaces of large protein-protein complexes. Nature Struct. Mol. Biol. 7, 220-223 (2000).
    • (2000) Nature Struct. Mol. Biol , vol.7 , pp. 220-223
    • Takahashi, H.1
  • 60
    • 0031576336 scopus 로고    scopus 로고
    • Torsion angle dynamics for NMR structure calculation with the new program DYANA
    • Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283-298 (1997).
    • (1997) J. Mol. Biol , vol.273 , pp. 283-298
    • Guntert, P.1    Mumenthaler, C.2    Wuthrich, K.3
  • 61
    • 0033003335 scopus 로고    scopus 로고
    • Protein backbone angle restraints from searching a database for chemical shift and sequence homology
    • Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289-302 (1999).
    • (1999) J. Biomol. NMR , vol.13 , pp. 289-302
    • Cornilescu, G.1    Delaglio, F.2    Bax, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.