-
1
-
-
34547196138
-
-
PHRVAO 0031-899X 10.1103/PhysRev.93.99
-
R. H. Dicke, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.93.99 93, 99 (1954).
-
(1954)
Phys. Rev.
, vol.93
, pp. 99
-
-
Dicke, R.H.1
-
2
-
-
35348884223
-
-
0008-4204
-
K.-P. Marzlin, R. Karasik, B. C. Sanders, and B. K. Whaley, Can. J. Phys. 85, 641 (2007). 0008-4204
-
(2007)
Can. J. Phys.
, vol.85
, pp. 641
-
-
Marzlin, K.-P.1
Karasik, R.2
Sanders, B.C.3
Whaley, B.K.4
-
3
-
-
3543055458
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.63.042307
-
J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.63.042307 63, 042307 (2001).
-
(2001)
Phys. Rev. A
, vol.63
, pp. 042307
-
-
Kempe, J.1
Bacon, D.2
Lidar, D.A.3
Whaley, K.B.4
-
5
-
-
3543117431
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.79.3306
-
P. Zanardi and M. Rasetti, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.3306 79, 3306 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3306
-
-
Zanardi, P.1
Rasetti, M.2
-
6
-
-
34547454411
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.76.012331
-
R. I. Karasik, K.-P. Marzlin, B. C. Sanders, and K. B. Whaley, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.012331 76, 012331 (2007).
-
(2007)
Phys. Rev. A
, vol.76
, pp. 012331
-
-
Karasik, R.I.1
Marzlin, K.-P.2
Sanders, B.C.3
Whaley, K.B.4
-
7
-
-
33847237628
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.022320
-
P. G. Brooke, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.022320 75, 022320 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 022320
-
-
Brooke, P.G.1
-
8
-
-
6444244383
-
-
JMOPEW 0950-0340 10.1080/095003400148295
-
A. Beige, S. F. Huelga, P. L. Knight, M. B. Plenio, and R. C. Thompson, J. Mod. Opt. JMOPEW 0950-0340 10.1080/095003400148295 47, 401 (2000).
-
(2000)
J. Mod. Opt.
, vol.47
, pp. 401
-
-
Beige, A.1
Huelga, S.F.2
Knight, P.L.3
Plenio, M.B.4
Thompson, R.C.5
-
10
-
-
0037065009
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.207902
-
D. Petrosyan and G. Kurizki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.207902 89, 207902 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 207902
-
-
Petrosyan, D.1
Kurizki, G.2
-
11
-
-
33947220522
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.032313
-
M. Kiffner, J. Evers, and C. H. Keitel, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.032313 75, 032313 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 032313
-
-
Kiffner, M.1
Evers, J.2
Keitel, C.H.3
-
12
-
-
0009303081
-
-
SPHJAR 0038-5646
-
A. A. Belavkin, B. Y. Zeldovich, A. M. Perelomov, and V. S. Popov, Sov. Phys. JETP SPHJAR 0038-5646 56, 264 (1969).
-
(1969)
Sov. Phys. JETP
, vol.56
, pp. 264
-
-
Belavkin, A.A.1
Zeldovich, B.Y.2
Perelomov, A.M.3
Popov, V.S.4
-
13
-
-
0001246273
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.2.883
-
R. H. Lehmberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.883 2, 883 (1970).
-
(1970)
Phys. Rev. A
, vol.2
, pp. 883
-
-
Lehmberg, R.H.1
-
14
-
-
26144460949
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.2.889
-
R. H. Lehmberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.889 2, 889 (1970).
-
(1970)
Phys. Rev. A
, vol.2
, pp. 889
-
-
Lehmberg, R.H.1
-
15
-
-
0001330689
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.2.2038
-
G. S. Agarwal, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.2038 2, 2038 (1970).
-
(1970)
Phys. Rev. A
, vol.2
, pp. 2038
-
-
Agarwal, G.S.1
-
16
-
-
49049143553
-
-
PRPLCM 0370-1573 10.1016/0370-1573(82)90102-8
-
M. Gross and S. Haroche, Phys. Rep. PRPLCM 0370-1573 10.1016/0370- 1573(82)90102-8 93, 301 (1982).
-
(1982)
Phys. Rep.
, vol.93
, pp. 301
-
-
Gross, M.1
Haroche, S.2
-
17
-
-
0033691417
-
-
OPCOB8 0030-4018 10.1016/S0030-4018(99)00694-X
-
H. J. Carmichael and K. Kim, Opt. Commun. OPCOB8 0030-4018 10.1016/S0030-4018(99)00694-X 179, 417 (2000).
-
(2000)
Opt. Commun.
, vol.179
, pp. 417
-
-
Carmichael, H.J.1
Kim, K.2
-
18
-
-
4344599280
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.68.023809
-
J. P. Clemens, L. Horvath, B. C. Sanders, and H. J. Carmichael, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.68.023809 68, 023809 (2003).
-
(2003)
Phys. Rev. A
, vol.68
, pp. 023809
-
-
Clemens, J.P.1
Horvath, L.2
Sanders, B.C.3
Carmichael, H.J.4
-
19
-
-
13144252246
-
-
JPAPEH 0953-4075 10.1088/0953-4075/38/2/021
-
K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/38/2/021 38, S295 (2005).
-
(2005)
J. Phys. B
, vol.38
, pp. 295
-
-
Singer, K.1
Stanojevic, J.2
Weidemüller, M.3
Côté, R.4
-
20
-
-
36149022296
-
-
PHRVAO 0031-899X 10.1103/PhysRev.72.339
-
H. A. Bethe, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.72.339 72, 339 (1947).
-
(1947)
Phys. Rev.
, vol.72
, pp. 339
-
-
Bethe, H.A.1
-
22
-
-
0001008937
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.17.1033
-
B. Coffey and R. Friedberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.17.1033 17, 1033 (1978).
-
(1978)
Phys. Rev. A
, vol.17
, pp. 1033
-
-
Coffey, B.1
Friedberg, R.2
-
23
-
-
17344368334
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.57.3276
-
P. Zanardi, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.57.3276 57, 3276 (1998).
-
(1998)
Phys. Rev. A
, vol.57
, pp. 3276
-
-
Zanardi, P.1
-
25
-
-
51249195066
-
-
NUCIAD 0029-6341 10.1007/BF02827754
-
E. A. Power and S. Zienau, Nuovo Cimento NUCIAD 0029-6341 10.1007/BF02827754 6, 7 (1957).
-
(1957)
Nuovo Cimento
, vol.6
, pp. 7
-
-
Power, E.A.1
Zienau, S.2
-
26
-
-
11744271615
-
-
PRPLCM 0370-1573 10.1016/0370-1573(73)90001-X
-
R. Friedberg, S. R. Hartmann, and J. T. Manassah, Phys. Rep., Phys. Lett. PRPLCM 0370-1573 10.1016/0370-1573(73)90001-X 7, 101 (1973).
-
(1973)
Phys. Rep., Phys. Lett.
, vol.7
, pp. 101
-
-
Friedberg, R.1
Hartmann, S.R.2
Manassah, J.T.3
-
31
-
-
41549122124
-
-
Ph.D. thesis, University of Rochester
-
L. Davidovich, Ph.D. thesis, University of Rochester, 1975.
-
(1975)
-
-
Davidovich, L.1
-
32
-
-
41549086316
-
-
note
-
In a large number of cases, a two-level model is insufficient to provide a consistent model for nonaligned dipoles. The reason for this is that the dipole moment d e| d |g is specified by selecting a particular set of two states with a dipole-allowed transition. For instance, in a transition between a J=0 ground state | 1s and a J=1 manifold of excited states | 2 px,y,z, the two-level system could be chosen to consist of the states |g = | 1s and |e = | 2 pz. Then the dipole moment would necessarily be oriented along the z axis. In this instance, in order to include other dipole orientations one would have to consider a four-state model.
-
-
-
-
33
-
-
41549157952
-
-
Strictly speaking this argument only holds for static dipolar charge distributions, whereas polarized atoms correspond to rotating dipoles. We have implicitly made use of the fact that the near field of any oscillating charge distribution is equivalent to the static field times an oscillating factor. Of course, when two oscillating dipoles are moved towards the same location memory effects could appear that are not taken into account by our simple argument. However, we expect that it remains valid in the limit of infinite time, in particular if one considers energy eigenstates as we do in Sec. 4.
-
Strictly speaking this argument only holds for static dipolar charge distributions, whereas polarized atoms correspond to rotating dipoles. We have implicitly made use of the fact that the near field of any oscillating charge distribution is equivalent to the static field times an oscillating factor. Of course, when two oscillating dipoles are moved towards the same location memory effects could appear that are not taken into account by our simple argument. However, we expect that it remains valid in the limit of infinite time, in particular if one considers energy eigenstates as we do in Sec. 4.
-
-
-
|