메뉴 건너뛰기




Volumn 77, Issue 3, 2008, Pages

Super- and subradiant emission of two-level systems in the near-Dicke limit

Author keywords

[No Author keywords available]

Indexed keywords

MAGNETIC MOMENTS; MATHEMATICAL MODELS; RESONANCE; WAVELENGTH;

EID: 41549110208     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.77.033844     Document Type: Article
Times cited : (27)

References (33)
  • 1
    • 34547196138 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.93.99
    • R. H. Dicke, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.93.99 93, 99 (1954).
    • (1954) Phys. Rev. , vol.93 , pp. 99
    • Dicke, R.H.1
  • 3
    • 3543055458 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.63.042307
    • J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.63.042307 63, 042307 (2001).
    • (2001) Phys. Rev. A , vol.63 , pp. 042307
    • Kempe, J.1    Bacon, D.2    Lidar, D.A.3    Whaley, K.B.4
  • 4
    • 0000967082 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.81.2594
    • D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.2594 81, 2594 (1998).
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 2594
    • Lidar, D.A.1    Chuang, I.L.2    Whaley, K.B.3
  • 5
    • 3543117431 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.79.3306
    • P. Zanardi and M. Rasetti, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.3306 79, 3306 (1997).
    • (1997) Phys. Rev. Lett. , vol.79 , pp. 3306
    • Zanardi, P.1    Rasetti, M.2
  • 7
    • 33847237628 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.75.022320
    • P. G. Brooke, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.022320 75, 022320 (2007).
    • (2007) Phys. Rev. A , vol.75 , pp. 022320
    • Brooke, P.G.1
  • 9
    • 0033721921 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.61.062309
    • G. K. Brennen, I. H. Deutsch, and P. S. Jessen, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.61.062309 61, 062309 (2000).
    • (2000) Phys. Rev. A , vol.61 , pp. 062309
    • Brennen, G.K.1    Deutsch, I.H.2    Jessen, P.S.3
  • 10
    • 0037065009 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.89.207902
    • D. Petrosyan and G. Kurizki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.207902 89, 207902 (2002).
    • (2002) Phys. Rev. Lett. , vol.89 , pp. 207902
    • Petrosyan, D.1    Kurizki, G.2
  • 11
    • 33947220522 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.75.032313
    • M. Kiffner, J. Evers, and C. H. Keitel, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.032313 75, 032313 (2007).
    • (2007) Phys. Rev. A , vol.75 , pp. 032313
    • Kiffner, M.1    Evers, J.2    Keitel, C.H.3
  • 13
    • 0001246273 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.2.883
    • R. H. Lehmberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.883 2, 883 (1970).
    • (1970) Phys. Rev. A , vol.2 , pp. 883
    • Lehmberg, R.H.1
  • 14
    • 26144460949 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.2.889
    • R. H. Lehmberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.889 2, 889 (1970).
    • (1970) Phys. Rev. A , vol.2 , pp. 889
    • Lehmberg, R.H.1
  • 15
    • 0001330689 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.2.2038
    • G. S. Agarwal, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.2038 2, 2038 (1970).
    • (1970) Phys. Rev. A , vol.2 , pp. 2038
    • Agarwal, G.S.1
  • 16
    • 49049143553 scopus 로고
    • PRPLCM 0370-1573 10.1016/0370-1573(82)90102-8
    • M. Gross and S. Haroche, Phys. Rep. PRPLCM 0370-1573 10.1016/0370- 1573(82)90102-8 93, 301 (1982).
    • (1982) Phys. Rep. , vol.93 , pp. 301
    • Gross, M.1    Haroche, S.2
  • 17
    • 0033691417 scopus 로고    scopus 로고
    • OPCOB8 0030-4018 10.1016/S0030-4018(99)00694-X
    • H. J. Carmichael and K. Kim, Opt. Commun. OPCOB8 0030-4018 10.1016/S0030-4018(99)00694-X 179, 417 (2000).
    • (2000) Opt. Commun. , vol.179 , pp. 417
    • Carmichael, H.J.1    Kim, K.2
  • 20
    • 36149022296 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.72.339
    • H. A. Bethe, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.72.339 72, 339 (1947).
    • (1947) Phys. Rev. , vol.72 , pp. 339
    • Bethe, H.A.1
  • 22
    • 0001008937 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.17.1033
    • B. Coffey and R. Friedberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.17.1033 17, 1033 (1978).
    • (1978) Phys. Rev. A , vol.17 , pp. 1033
    • Coffey, B.1    Friedberg, R.2
  • 23
    • 17344368334 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.57.3276
    • P. Zanardi, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.57.3276 57, 3276 (1998).
    • (1998) Phys. Rev. A , vol.57 , pp. 3276
    • Zanardi, P.1
  • 25
    • 51249195066 scopus 로고
    • NUCIAD 0029-6341 10.1007/BF02827754
    • E. A. Power and S. Zienau, Nuovo Cimento NUCIAD 0029-6341 10.1007/BF02827754 6, 7 (1957).
    • (1957) Nuovo Cimento , vol.6 , pp. 7
    • Power, E.A.1    Zienau, S.2
  • 31
    • 41549122124 scopus 로고
    • Ph.D. thesis, University of Rochester
    • L. Davidovich, Ph.D. thesis, University of Rochester, 1975.
    • (1975)
    • Davidovich, L.1
  • 32
    • 41549086316 scopus 로고    scopus 로고
    • note
    • In a large number of cases, a two-level model is insufficient to provide a consistent model for nonaligned dipoles. The reason for this is that the dipole moment d e| d |g is specified by selecting a particular set of two states with a dipole-allowed transition. For instance, in a transition between a J=0 ground state | 1s and a J=1 manifold of excited states | 2 px,y,z, the two-level system could be chosen to consist of the states |g = | 1s and |e = | 2 pz. Then the dipole moment would necessarily be oriented along the z axis. In this instance, in order to include other dipole orientations one would have to consider a four-state model.
  • 33
    • 41549157952 scopus 로고    scopus 로고
    • Strictly speaking this argument only holds for static dipolar charge distributions, whereas polarized atoms correspond to rotating dipoles. We have implicitly made use of the fact that the near field of any oscillating charge distribution is equivalent to the static field times an oscillating factor. Of course, when two oscillating dipoles are moved towards the same location memory effects could appear that are not taken into account by our simple argument. However, we expect that it remains valid in the limit of infinite time, in particular if one considers energy eigenstates as we do in Sec. 4.
    • Strictly speaking this argument only holds for static dipolar charge distributions, whereas polarized atoms correspond to rotating dipoles. We have implicitly made use of the fact that the near field of any oscillating charge distribution is equivalent to the static field times an oscillating factor. Of course, when two oscillating dipoles are moved towards the same location memory effects could appear that are not taken into account by our simple argument. However, we expect that it remains valid in the limit of infinite time, in particular if one considers energy eigenstates as we do in Sec. 4.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.