-
1
-
-
0029388979
-
-
SCIEAS
-
For reviews, see D. P. DiVincenzo, Science 270, 255 (1995); SCIEAS
-
(1995)
Science
, vol.270
, pp. 255
-
-
DiVincenzo, D.P.1
-
5
-
-
0001134970
-
-
SCIEAS
-
P. W. Shor, W. H. Zurek, I. L. Chuang, and R. Laflamme, Science 270, 1633 (1995).SCIEAS
-
(1995)
Science
, vol.270
, pp. 1633
-
-
Shor, P.W.1
Zurek, W.H.2
Chuang, I.L.3
Laflamme, R.4
-
6
-
-
33746738958
-
-
PLRAAN
-
P. W. Shor, Phys. Rev. A 52, 2493 (1995); PLRAAN
-
(1995)
Phys. Rev. A
, vol.52
, pp. 2493
-
-
Shor, P.W.1
-
9
-
-
0012095088
-
-
PRLAAZ
-
G. Palma, K. Suominen, and A. Ekert, Proc. R. Soc. London, Ser. A 452, 567 (1996).PRLAAZ
-
(1996)
Proc. R. Soc. London, Ser. A
, vol.452
, pp. 567
-
-
Palma, G.1
Suominen, K.2
Ekert, A.3
-
13
-
-
0037868192
-
-
JPAMA4
-
A. Crubellier, S. Libermann, D. Pavolini, and P. Pillet, J. Phys. B 18, 3811 (1985).JPAMA4
-
(1985)
J. Phys. B
, vol.18
, pp. 3811
-
-
Crubellier, A.1
Libermann, S.2
Pavolini, D.3
Pillet, P.4
-
15
-
-
34547196138
-
-
PHRVAO
-
R. Dicke, Phys. Rev. 93, 99 (1954).PHRVAO
-
(1954)
Phys. Rev.
, vol.93
, pp. 99
-
-
Dicke, R.1
-
17
-
-
0001295735
-
-
PRLTAO
-
J. I. Kim, M. C. Nemes, A. F. R. de Toledo Piza, and H. E. Borges, Phys. Rev. Lett. 77, 207 (1996).PRLTAO
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 207
-
-
Kim, J.I.1
Nemes, M.C.2
de Toledo Piza, A.F.R.3
Borges, H.E.4
-
20
-
-
85037193523
-
-
This result also follows simply by observing in view of Eq. (3) and the finite-dimensionality of (Formula presented) the (Formula presented)’s must be nilpotent
-
This result also follows simply by observing in view of Eq. (3) and the finite-dimensionality of (Formula presented) the (Formula presented)’s must be nilpotent.
-
-
-
-
21
-
-
8744266947
-
-
PRVDAQ
-
W. H. Zurek, Phys. Rev. D 24, 1516 (1981); PRVDAQ
-
(1981)
Phys. Rev. D
, vol.24
, pp. 1516
-
-
Zurek, W.H.1
-
22
-
-
33646957209
-
-
Phys. Rev. DW. H. Zurek26, 1862 (1982).
-
(1982)
, vol.26
, pp. 1862
-
-
Zurek, W.H.1
-
23
-
-
85037245095
-
-
More technically it suffices that the (Formula presented)’s and (Formula presented) belong to the (Formula presented)-fold tensor representation of the universal enveloping algebra (Formula presented)
-
More technically it suffices that the (Formula presented)’s and (Formula presented) belong to the (Formula presented)-fold tensor representation of the universal enveloping algebra (Formula presented)
-
-
-
|