메뉴 건너뛰기




Volumn 71, Issue 2, 2005, Pages

Directed percolation with long-range interactions: Modeling nonequilibrium wetting

Author keywords

[No Author keywords available]

Indexed keywords

ION CHANNEL CONDUCTANCE; LOW-CONDUCTANCE POTASSIUM; NON-MICHAELIS-MENTEN KINETICS; POTASSIUM ION CHANNELS;

EID: 41349094550     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.71.026121     Document Type: Article
Times cited : (28)

References (39)
  • 2
    • 5244231417 scopus 로고    scopus 로고
    • U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Phys. Rev. Lett. 76, 2746 (1996); Phys. Rev. E 57, 4997 (1998).
    • (1998) Phys. Rev. E , vol.57 , pp. 4997
  • 8
    • 0037718611 scopus 로고    scopus 로고
    • F. de Los Santos, M. M. Telo da Gama, and M. A. Muñoz, Europhys. Lett. 57, 803 (2002); Phys. Rev. E 67, 021607 (2003).
    • (2003) Phys. Rev. E , vol.67 , pp. 021607
  • 9
    • 0009369895 scopus 로고    scopus 로고
    • J. Candia and E. V. Albano, Eur. Phys. J. B 16, 531 (2000); J. Phys.: Condens. Matter 14, 4927 (2002); Phys. Rev. Lett. 88, 016103 (2002).
    • (2000) Eur. Phys. J. B , vol.16 , pp. 531
    • Candia, J.1    Albano, E.V.2
  • 10
    • 0037141221 scopus 로고    scopus 로고
    • J. Candia and E. V. Albano, Eur. Phys. J. B 16, 531 (2000); J. Phys.: Condens. Matter 14, 4927 (2002); Phys. Rev. Lett. 88, 016103 (2002).
    • (2002) J. Phys.: Condens. Matter , vol.14 , pp. 4927
  • 11
    • 4243279438 scopus 로고    scopus 로고
    • J. Candia and E. V. Albano, Eur. Phys. J. B 16, 531 (2000); J. Phys.: Condens. Matter 14, 4927 (2002); Phys. Rev. Lett. 88, 016103 (2002).
    • (2002) Phys. Rev. Lett. , vol.88 , pp. 016103
  • 13
    • 0034334818 scopus 로고    scopus 로고
    • For an introduction to directed percolation, see H. Hinrichsen, Adv. Phys. 49, 815 (2000).
    • (2000) Adv. Phys. , vol.49 , pp. 815
    • Hinrichsen, H.1
  • 26
    • 33646971188 scopus 로고    scopus 로고
    • note
    • The same power-law behavior for P(ℓ) can be obtained by a general theorem on fractals, which relates the size distribution of inactive islands to fractal dimensions [23]. A scaling argument for the spacelike fractal dimension of DP can be found in Ref. [24].
  • 28
    • 0010851862 scopus 로고    scopus 로고
    • Freeman, New York
    • J. P. Hovi, A. Aharony, D. Stauffer, and B. B. Mandelbrot, Phys. Rev. Lett. 77, 877 (1996); B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982), p. 78.
    • (1982) The Fractal Geometry of Nature , pp. 78
    • Mandelbrot, B.B.1
  • 31
    • 33646986771 scopus 로고    scopus 로고
    • note
    • s(t) decay with the same critical exponent θ= δ due to a special symmetry of DP [9].
  • 33
    • 33646985495 scopus 로고    scopus 로고
    • note
    • For completeness, we mention that the case p=0 is another special point of the phase diagram, since here the dynamical rule does not allow for particle evaporation in the middle of the depinned portion of the interface. Numerical analysis and the comparison with an analogous unrestricted model [1] strongly suggests that it belongs to the DP universality class.
  • 36
    • 0003067890 scopus 로고
    • edited by C. Godrèche Cambridge University Press, Cambridge, England
    • J. Krug and H. Spohn, in Solids Far from Equilibrium, edited by C. Godrèche (Cambridge University Press, Cambridge, England, 1991), p. 479.
    • (1991) Solids Far from Equilibrium , pp. 479
    • Krug, J.1    Spohn, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.