-
12
-
-
0018992908
-
-
G. Benettin, L. Galgani, A. Giorgilli, and J.M. Strelcyn, Meccanica 9, 21 (1980).
-
(1980)
Meccanica
, vol.9
, pp. 21
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.M.4
-
17
-
-
85035295508
-
-
S. Puri, Narosa Publishing, New Dehli
-
For a recent review on directed percolation, see P. Grassberger, in Proceedings of the 1995 Shimla Conference on Complex Systems, edited by S. Puri (Narosa Publishing, New Dehli, 1997).
-
(1997)
Proceedings of the 1995 Shimla Conference on Complex Systems
-
-
-
18
-
-
21344466254
-
-
A. Politi, R. Livi, R. Oppo, and R. Kapral, Europhys. Lett. 22, 571 (1993);
-
(1993)
Europhys. Lett.
, vol.22
, pp. 571
-
-
Politi, A.1
Livi, R.2
Oppo, R.3
Kapral, R.4
-
19
-
-
0001740685
-
-
R. Kapral, R. Livi, R. Oppo, and A. Politi, Phys. Rev. E 49, 2009 (1994).
-
(1994)
Phys. Rev. E
, vol.49
, pp. 2009
-
-
Kapral, R.1
Livi, R.2
Oppo, R.3
Politi, A.4
-
20
-
-
29444458309
-
-
P. Hubert, P. Tisseur, and S. Vaienti, J.-M. Gambaudo World Scientific, Singapore
-
L. Baroni, R. Livi, and A. Torcini, in Dynamical Systems: From Crystal to Chaos, edited by P. Hubert, P. Tisseur, and S. Vaienti, J.-M. Gambaudo (World Scientific, Singapore, 2000), p. 23.
-
(2000)
Dynamical Systems: From Crystal to Chaos
, pp. 23
-
-
Baroni, L.1
Livi, R.2
Torcini, A.3
-
21
-
-
85035263129
-
-
We have checked that different norms, e.g., the maximum or the Euclidean, do not modify the scenario described herein. Note that both quantities are well defined also in the noise-free case, since there is a finite probability that two different initial conditions may stay closer than a finite distance (Formula presented)
-
We have checked that different norms, e.g., the maximum or the Euclidean, do not modify the scenario described herein. Note that both quantities are well defined also in the noise-free case, since there is a finite probability that two different initial conditions may stay closer than a finite distance (Formula presented).
-
-
-
-
22
-
-
85035285254
-
-
a recent book by L. Arnold [Random Dynamical Systems, in Springer Monographs in Mathematics (Berlin, New York, 1998)], it has been shown that the maximum Lyapunov exponent is a meaningful quantity when the deterministic dynamics is coupled with the time-independent stochastic signal
-
In a recent book by L. Arnold [Random Dynamical Systems, in Springer Monographs in Mathematics (Berlin, New York, 1998)], it has been shown that the maximum Lyapunov exponent is a meaningful quantity when the deterministic dynamics is coupled with the time-independent stochastic signal.
-
-
-
-
28
-
-
85035263128
-
-
A.-L. Barabasi and H.E. Stanley Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, England, 1995)
-
A.-L. Barabasi and H.E. Stanley Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, England, 1995).
-
-
-
-
35
-
-
0000704565
-
-
E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, Phys. Rev. Lett. 77, 1262 (1996);
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 1262
-
-
Aurell, E.1
Boffetta, G.2
Crisanti, A.3
Paladin, G.4
Vulpiani, A.5
-
36
-
-
85035285985
-
-
e-print Phys. Rev. E (to be published); e-print
-
M. Cencini and A. Torcini, Phys. Rev. E (to be published); e-print nlin.CD/0011044.
-
-
-
Cencini, M.1
Torcini, A.2
|