메뉴 건너뛰기




Volumn 91, Issue 2, 2008, Pages 121-132

LPLS-regression: a method for prediction and classification under the influence of background information on predictor variables

Author keywords

Breast cancer; L shaped data matrix structure; Microarray; Partial least squares regression; Pathway information

Indexed keywords

ARTICLE; FALSE POSITIVE RESULT; INFORMATION PROCESSING; PARAMETERS OF MEASUREMENT AND ANALYSIS; PARTIAL LEAST SQUARES REGRESSION; PREDICTOR VARIABLE; PRIORITY JOURNAL; SIMULATION;

EID: 41049106026     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2007.10.006     Document Type: Article
Times cited : (25)

References (22)
  • 7
    • 41049086826 scopus 로고    scopus 로고
    • S. Sæbø, M. Martens and H. Martens, in E.V. Vinzi, W. Chin, J. Henseler and H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods, and Applications in Marketing and Related Areas, Springer-Verlag, Heidelberg, in press.
    • S. Sæbø, M. Martens and H. Martens, in E.V. Vinzi, W. Chin, J. Henseler and H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods, and Applications in Marketing and Related Areas, Springer-Verlag, Heidelberg, in press.
  • 22
    • 84957947087 scopus 로고    scopus 로고
    • Proc. PLS'05 International Symposium
    • Aluja T., Casanovas J., Vinzi V.E., Morineau A., and Tenenhaus M. (Eds)
    • Martens H. Proc. PLS'05 International Symposium. In: Aluja T., Casanovas J., Vinzi V.E., Morineau A., and Tenenhaus M. (Eds). SPAD Test & Go Group, Paris (2005) 125-132
    • (2005) SPAD Test & Go Group, Paris , pp. 125-132
    • Martens, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.