메뉴 건너뛰기




Volumn 6514, Issue PART 1, 2007, Pages

Particle swarm optimization of neural network CAD systems with clinically relevant objectives

Author keywords

Breast cancer; Classification; Computer aided diagnosis; Mammography; Neural networks; Particle swarm optimization; Performance; ROC analysis; Training algorithms

Indexed keywords

BACKPROPAGATION ALGORITHMS; COMPUTER AIDED DIAGNOSIS; MAMMOGRAPHY; MEAN SQUARE ERROR; MORPHOLOGY; OPTIMIZATION;

EID: 35248840614     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.713829     Document Type: Conference Paper
Times cited : (5)

References (24)
  • 1
    • 0027604029 scopus 로고
    • Simulation studies of data classification by artificial neural networks: Potential applications in medical imaging and decision making
    • Y. Wu, K. Doi. C. E. Metz, N. Asada, and M. L. Giger, "Simulation studies of data classification by artificial neural networks: Potential applications in medical imaging and decision making," J. Digit. Imag. 6(2), pp. 117-125, 1993.
    • (1993) J. Digit. Imag , vol.6 , Issue.2 , pp. 117-125
    • Wu, Y.1    Doi, K.2    Metz, C.E.3    Asada, N.4    Giger, M.L.5
  • 2
    • 0028849805 scopus 로고
    • Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
    • H.-P. Chan, S. C. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, "Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network," Med. Phys. 22(10), pp. 1555-1567, 1995.
    • (1995) Med. Phys , vol.22 , Issue.10 , pp. 1555-1567
    • Chan, H.-P.1    Lo, S.C.2    Sahiner, B.3    Lam, K.L.4    Helvie, M.A.5
  • 3
    • 0032216601 scopus 로고    scopus 로고
    • Computer-aided diagnosis: A neural-network-based approach to lung nodule detection
    • M. G. Penedo, M. J. Carreira, A. Mosquera, and D. Cabello, "Computer-aided diagnosis: a neural-network-based approach to lung nodule detection," IEEE Trans. Med. Imag. 17(6), pp. 872-880, 1998.
    • (1998) IEEE Trans. Med. Imag , vol.17 , Issue.6 , pp. 872-880
    • Penedo, M.G.1    Carreira, M.J.2    Mosquera, A.3    Cabello, D.4
  • 4
    • 0035006815 scopus 로고    scopus 로고
    • A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
    • G. D. Tourassi, M. K. Markey, J. Y. Lo, and C. E. Floyd Jr., "A neural network approach to breast cancer diagnosis as a constraint satisfaction problem.," Med. Phys. 28(5), pp. 804-811, 2001.
    • (2001) Med. Phys , vol.28 , Issue.5 , pp. 804-811
    • Tourassi, G.D.1    Markey, M.K.2    Lo, J.Y.3    Floyd Jr., C.E.4
  • 5
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • C. E. Metz, "Basic principles of ROC analysis," Semin. Nucl. Med. 8(4), pp. 283-298, 1978.
    • (1978) Semin. Nucl. Med , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 6
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • C. E. Metz, "ROC methodology in radiologic imaging," Invest. Radiol. 21(9), pp. 720-733, 1986.
    • (1986) Invest. Radiol , vol.21 , Issue.9 , pp. 720-733
    • Metz, C.E.1
  • 7
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology 143(1), pp. 29-36, 1982.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 8
    • 0024370623 scopus 로고
    • Analyzing a portion of the ROC curve
    • D. K. McClish, "Analyzing a portion of the ROC curve," Medical Decis. Making 9(3), pp. 190-195, 1989.
    • (1989) Medical Decis. Making , vol.9 , Issue.3 , pp. 190-195
    • McClish, D.K.1
  • 9
    • 0029824432 scopus 로고    scopus 로고
    • A receiver operating characteristic partial area index for highly sensitive diagnostic tests
    • Y. Jiang, C. E. Metz, and R. M. Nishikawa, "A receiver operating characteristic partial area index for highly sensitive diagnostic tests," Radiology 201(3), pp. 621-625, 1996.
    • (1996) Radiology , vol.201 , Issue.3 , pp. 621-625
    • Jiang, Y.1    Metz, C.E.2    Nishikawa, R.M.3
  • 12
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - explosion, stability, and convergence in a multidimensional complex space
    • M. Clerc and J. Kennedy, "The particle swarm - explosion, stability, and convergence in a multidimensional complex space," IEEE Trans. Evol. Comput. 6(1), pp. 58-73, 2002.
    • (2002) IEEE Trans. Evol. Comput , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 13
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • M. Clerc, "The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization," in Proc. IEEE Congress on Evolutionary Computation, pp. 1951-1957, 1999.
    • (1999) Proc. IEEE Congress on Evolutionary Computation , pp. 1951-1957
    • Clerc, M.1
  • 16
    • 0030996609 scopus 로고    scopus 로고
    • Computerized classification of malignant and benign microcalcifications on mammograms: Texture analysis using an artificial neural network
    • H.-P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D. Adler, and M. M. Goodsitt, "Computerized classification of malignant and benign microcalcifications on mammograms: Texture analysis using an artificial neural network," Phys. Med. Biol. 42(3), pp. 549-567, 1997.
    • (1997) Phys. Med. Biol , vol.42 , Issue.3 , pp. 549-567
    • Chan, H.-P.1    Sahiner, B.2    Petrick, N.3    Helvie, M.A.4    Lam, K.L.5    Adler, D.D.6    Goodsitt, M.M.7
  • 18
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and C. E. Metz, "Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer," Radiology 187(1), pp. 81-87, 1993.
    • (1993) Radiology , vol.187 , Issue.1 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 19
    • 0035437718 scopus 로고    scopus 로고
    • Ideal observer approximation using Bayesian classification neural networks
    • M. A. Kupinski, D. C. Edwards, M. L. Giger, and C. E. Metz, "Ideal observer approximation using Bayesian classification neural networks," IEEE Trans. Med. Imag. 20(9), pp. 886-899, 2001.
    • (2001) IEEE Trans. Med. Imag , vol.20 , Issue.9 , pp. 886-899
    • Kupinski, M.A.1    Edwards, D.C.2    Giger, M.L.3    Metz, C.E.4
  • 21
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks
    • V. G. Gudise and G. K. Venayagamoorthy, "Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks," in Proc. IEEE Swarm Intelligence Symposium, pp. 110-117, 2003.
    • (2003) Proc. IEEE Swarm Intelligence Symposium , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 23
    • 23844499763 scopus 로고    scopus 로고
    • DNA: Directional neighborhood analysis for detection of breast masses in screening mammograms
    • Proc. SPIE
    • N. H. Eltonsy, G. D. Tourassi, P. A. Habas, and A. S. Elmaghraby, "DNA: Directional neighborhood analysis for detection of breast masses in screening mammograms," in Medical Imaging: Image Processing, Proc. SPIE 5747, pp. 38-47, 2005.
    • (2005) Medical Imaging: Image Processing , vol.5747 , pp. 38-47
    • Eltonsy, N.H.1    Tourassi, G.D.2    Habas, P.A.3    Elmaghraby, A.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.