메뉴 건너뛰기




Volumn , Issue , 2007, Pages 513-518

Intrinsic plasticity for reservoir learning algorithms

Author keywords

[No Author keywords available]

Indexed keywords

BENCH-MARK PROBLEMS; ECHO STATE NETWORKS; INFORMATION TRANSMISSION; INTRINSIC PLASTICITY; LEARNING PARAMETERS; ONLINE LEARNING; RESERVOIR NETWORKS; WEIGHT MATRICES;

EID: 40649114289     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (8)
  • 2
    • 10944225085 scopus 로고    scopus 로고
    • Backpropagation-decorrelation: Recurrent learning with o(n) complexity
    • Jochen J. Steil. Backpropagation-decorrelation: Recurrent learning with o(n) complexity. In Proc. IJCNN, pages 843-848, 2004.
    • (2004) Proc. IJCNN , pp. 843-848
    • Steil, J.J.1
  • 5
    • 0242300203 scopus 로고    scopus 로고
    • The other side of the engram: Experience-driven changes in neuronal intrinsic excitability
    • Wei Zhang and David J. Linden. The other side of the engram: Experience-driven changes in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4:885-900, 2003.
    • (2003) Nature Reviews Neuroscience , vol.4 , pp. 885-900
    • Zhang, W.1    Linden, D.J.2
  • 6
    • 7244251462 scopus 로고    scopus 로고
    • Plasticity in single neuron and circuit computations
    • Alain Destexhe and Eve Marder. Plasticity in single neuron and circuit computations. Nature, 431:789-795, 2004.
    • (2004) Nature , vol.431 , pp. 789-795
    • Destexhe, A.1    Marder, E.2
  • 7
    • 0000362119 scopus 로고
    • Increase in complexity in random neural networks
    • B. Cessac. Increase in complexity in random neural networks. Journal Physique I France, 5:409-432, 1995.
    • (1995) Journal Physique I France , vol.5 , pp. 409-432
    • Cessac, B.1
  • 8
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: Unifying the algorithmsand accelerating convergence
    • A. Atiya and A.G. Parlos. New results on recurrent network training: unifying the algorithmsand accelerating convergence. IEEE Trans. Neural Networks, 11(3):697-709, 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.1    Parlos, A.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.