메뉴 건너뛰기




Volumn 29, Issue 1, 2008, Pages 19-40

How to optimize the TS-fuzzy knowledge base to achieve desired performances: Accuracy and robustness

Author keywords

Genetic optimization; Hybrid learning; Nonlinear PI PD controller; Reduced rule base; Robust and optimal controller

Indexed keywords

BACKPROPAGATION; FUZZY CONTROL; GENETIC ALGORITHMS; NEURAL NETWORKS; OPTIMIZATION; ROBUSTNESS (CONTROL SYSTEMS);

EID: 40449111855     PISSN: 01432087     EISSN: 10991514     Source Type: Journal    
DOI: 10.1002/oca.811     Document Type: Article
Times cited : (1)

References (38)
  • 1
    • 22944466391 scopus 로고    scopus 로고
    • Automatic design of hierarchical TS-FS model using ant programming and PSO algorithm
    • The Eleventh International Conference on Artificial Intelligence: Methodology, Systems, and Applications AIMSA, Varna, Bulgaria, Springer: Berlin, Heidelberg, 2-4 September
    • Chen Y, Dong J, Yang B. Automatic design of hierarchical TS-FS model using ant programming and PSO algorithm. The Eleventh International Conference on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA), Varna, Bulgaria. Lecture Notes in Artificial Intelligence, vol. 3192. Springer: Berlin, Heidelberg, 2-4 September, 2004; 285-294.
    • (2004) Lecture Notes in Artificial Intelligence , vol.3192 , pp. 285-294
    • Chen, Y.1    Dong, J.2    Yang, B.3
  • 3
    • 33646072176 scopus 로고    scopus 로고
    • Hybrid learning models to get the interpretability - accuracy trade-off in fuzzy modelling
    • Alcaléa R, Alcaléa-Fdez J, Casillas J, Cordéon O, Herrera F. Hybrid learning models to get the interpretability - accuracy trade-off in fuzzy modelling. Soft Computing 2006; 10:717-734.
    • (2006) Soft Computing , vol.10 , pp. 717-734
    • Alcaléa, R.1    Alcaléa-Fdez, J.2    Casillas, J.3    Cordéon, O.4    Herrera, F.5
  • 4
    • 0036888742 scopus 로고    scopus 로고
    • Reduction of fuzzy control rules by means of premise learning-method and case study
    • Xiong N, Litz L. Reduction of fuzzy control rules by means of premise learning-method and case study. Fuzzy Sets and Systems 2002; 132:217-231.
    • (2002) Fuzzy Sets and Systems , vol.132 , pp. 217-231
    • Xiong, N.1    Litz, L.2
  • 5
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • Kwong S, Jin Y, Wie H, Man KF. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 2005; 149(1): 149-186.
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 149-186
    • Kwong, S.1    Jin, Y.2    Wie, H.3    Man, K.F.4
  • 6
    • 11244305514 scopus 로고    scopus 로고
    • How to determine the minimum number of fuzzy rules to achieve given accuracy: A computational geometric approach to SISO case
    • Wan F, Shang H, Wang L-X, Sun Y-X. How to determine the minimum number of fuzzy rules to achieve given accuracy: a computational geometric approach to SISO case. Fuzzy Sets and Systems 2004; 150(2): 199-209.
    • (2004) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 199-209
    • Wan, F.1    Shang, H.2    Wang, L.-X.3    Sun, Y.-X.4
  • 7
    • 0033721935 scopus 로고    scopus 로고
    • Generalized Takagi-Sugeno fuzzy systems: Rule reduction and robust control
    • San Antonio, TX, U.S.A, 7-10 May
    • Tanaka K, Taniguchi T, Wang HO. Generalized Takagi-Sugeno fuzzy systems: rule reduction and robust control. The Ninth IEEE International Conference on Fuzzy Systems, San Antonio, TX, U.S.A., vol. 2, 7-10 May 2000; 688-693.
    • (2000) The Ninth IEEE International Conference on Fuzzy Systems , vol.2 , pp. 688-693
    • Tanaka, K.1    Taniguchi, T.2    Wang, H.O.3
  • 8
    • 0035415965 scopus 로고    scopus 로고
    • Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems
    • Taniguchi T, Tanaka K, Ohtake H, Wang HO. Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems 2001; 9(4):525-538.
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 525-538
    • Taniguchi, T.1    Tanaka, K.2    Ohtake, H.3    Wang, H.O.4
  • 10
    • 0036531527 scopus 로고    scopus 로고
    • Evolution-based design of neural fuzzy networks using self-adapting genetic parameters
    • Alpaydin G, Dündar G, Balkir S. Evolution-based design of neural fuzzy networks using self-adapting genetic parameters. IEEE Transactions on Fuzzy Systems 2002; 10(2):211-221.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 211-221
    • Alpaydin, G.1    Dündar, G.2    Balkir, S.3
  • 13
    • 14644430392 scopus 로고    scopus 로고
    • Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction
    • Casillas J, Cordon O, del Jesus MJ, Herrera F. Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Transactions on Fuzzy Systems 2005; 13(1):13-29.
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.1 , pp. 13-29
    • Casillas, J.1    Cordon, O.2    del Jesus, M.J.3    Herrera, F.4
  • 14
    • 0016368711 scopus 로고
    • Application of fuzzy algorithms for control of simple dynamic plant
    • Mamdani EH. Application of fuzzy algorithms for control of simple dynamic plant. IEEE 1974; 121(12):1585-1588.
    • (1974) IEEE , vol.121 , Issue.12 , pp. 1585-1588
    • Mamdani, E.H.1
  • 15
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modelling and control
    • Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man and Cybernetics 1985; 15(1):116-132.
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 17
    • 4444243825 scopus 로고    scopus 로고
    • Parameter optimisation for a class of general TS fuzzy controllers via a new DNA-based genetic algorithm
    • Hangzhou, People's Republic of China, 15-19 June
    • Ren L, Ding Y. Parameter optimisation for a class of general TS fuzzy controllers via a new DNA-based genetic algorithm. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, People's Republic of China, 15-19 June 2004; 2149-2153.
    • (2004) Proceedings of the 5th World Congress on Intelligent Control and Automation , pp. 2149-2153
    • Ren, L.1    Ding, Y.2
  • 18
    • 0032072496 scopus 로고    scopus 로고
    • Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control
    • Ying H. Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control. IEEE Transactions on Fuzzy Systems 1998; 6(2):226-234.
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.2 , pp. 226-234
    • Ying, H.1
  • 19
    • 0034174121 scopus 로고    scopus 로고
    • Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme
    • Ying H. Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme. Information Sciences 2000; 123:281-293.
    • (2000) Information Sciences , vol.123 , pp. 281-293
    • Ying, H.1
  • 20
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov NK, Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transactions on Fuzzy Systems 2002; 10(2): 144-154.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 22
    • 0346947216 scopus 로고    scopus 로고
    • Systematic method for the design of a full-scale fuzzy PID controller for SVC to control power system stability
    • Lo KL, Sadegh MO. Systematic method for the design of a full-scale fuzzy PID controller for SVC to control power system stability. IEE Proceedings-Generations Transmission and Distribution 2003; 150(3):297-304.
    • (2003) IEE Proceedings-Generations Transmission and Distribution , vol.150 , Issue.3 , pp. 297-304
    • Lo, K.L.1    Sadegh, M.O.2
  • 25
    • 9244238681 scopus 로고    scopus 로고
    • Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control
    • Kaitwanidvilai S, Parnichkun M. Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control. Mechatronics 2005; 15:23-41.
    • (2005) Mechatronics , vol.15 , pp. 23-41
    • Kaitwanidvilai, S.1    Parnichkun, M.2
  • 27
    • 30744471635 scopus 로고    scopus 로고
    • Induction motor servo drives using robust PID-like neuro-fuzzy controller
    • Kim S-M, Han W-Y. Induction motor servo drives using robust PID-like neuro-fuzzy controller. Control Engineering Practice 2006; 14(5):481-487.
    • (2006) Control Engineering Practice , vol.14 , Issue.5 , pp. 481-487
    • Kim, S.-M.1    Han, W.-Y.2
  • 28
    • 3042549361 scopus 로고    scopus 로고
    • Fuzzy identification using fuzzy neural networks with stable learning algorithms
    • Yu W, Li X. Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Transactions on Fuzzy Systems 2004; 12(3):411-420.
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , Issue.3 , pp. 411-420
    • Yu, W.1    Li, X.2
  • 29
    • 0141793006 scopus 로고    scopus 로고
    • Neural identification of rock parameters using fuzzy adaptive learning parameters
    • Liang YC, Feng DP, Liu GR, Yang XW, Han X. Neural identification of rock parameters using fuzzy adaptive learning parameters. Computers and Structures 2003; 81:2373-2382.
    • (2003) Computers and Structures , vol.81 , pp. 2373-2382
    • Liang, Y.C.1    Feng, D.P.2    Liu, G.R.3    Yang, X.W.4    Han, X.5
  • 32
    • 1642311384 scopus 로고    scopus 로고
    • A GA-based neural fuzzy system for temperature control
    • Lin C-J. A GA-based neural fuzzy system for temperature control. Fuzzy Sets and Systems 2004; 143:311-333.
    • (2004) Fuzzy Sets and Systems , vol.143 , pp. 311-333
    • Lin, C.-J.1
  • 33
    • 0037120676 scopus 로고    scopus 로고
    • A GA-based fuzzy modeling approach for generating TSK models
    • Papadakis SE, Theocharis JB. A GA-based fuzzy modeling approach for generating TSK models. Fuzzy Sets and Systems 2002; 131:121-152.
    • (2002) Fuzzy Sets and Systems , vol.131 , pp. 121-152
    • Papadakis, S.E.1    Theocharis, J.B.2
  • 34
    • 33748796541 scopus 로고    scopus 로고
    • Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform
    • Hellendoorn H, Driankov D eds, Springer: Berlin
    • Park M-K, Ji S-H, Kim E-T, Park M. Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform. In Fuzzy Model Identification, Selected approaches, Hellendoorn H, Driankov D (eds). Springer: Berlin, 1997; 91-119.
    • (1997) Fuzzy Model Identification, Selected approaches , pp. 91-119
    • Park, M.-K.1    Ji, S.-H.2    Kim, E.-T.3    Park, M.4
  • 36
    • 11144310168 scopus 로고    scopus 로고
    • Temperature control by hardware implemented recurrent fuzzy controller
    • Budapest, 25-29 July
    • Juang C-F, Chen J-S, Huang H-J. Temperature control by hardware implemented recurrent fuzzy controller. Fuzzy-IEEE, Budapest, 25-29 July 2004, 795-799.
    • (2004) Fuzzy-IEEE , pp. 795-799
    • Juang, C.-F.1    Chen, J.-S.2    Huang, H.-J.3
  • 37
    • 0037332304 scopus 로고    scopus 로고
    • Self organizing neuro-fuzzy system for control of unknown plants
    • Li C, Lee C-Y. Self organizing neuro-fuzzy system for control of unknown plants. IEEE Transactions on Fuzzy Systems 2003; 11(1):135-150.
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , Issue.1 , pp. 135-150
    • Li, C.1    Lee, C.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.