메뉴 건너뛰기




Volumn 150, Issue 2, 2005, Pages 199-209

How to determine the minimum number of fuzzy rules to achieve given accuracy: A computational geometric approach to SISO case

Author keywords

Computational geometric method; Fuzzy identification; Piecewise linear approximation; Rule reduction

Indexed keywords

COMPUTATIONAL GEOMETRIC METHOD; FUZZY IDENTIFICATION; PIECEWISE LINEAR APPROXIMATION; RULE REDUCTION;

EID: 11244305514     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2004.06.011     Document Type: Article
Times cited : (37)

References (34)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Inform. Theory 39 3 1993 930 945
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 5
    • 0034503980 scopus 로고    scopus 로고
    • Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators
    • Y.S. Ding, H. Ying, and S.H. Shao Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators IEEE Trans. Systems Man Cybernet. B 33 6 2000 857 864
    • (2000) IEEE Trans. Systems Man Cybernet. B , vol.33 , Issue.6 , pp. 857-864
    • Ding, Y.S.1    Ying, H.2    Shao, S.H.3
  • 6
    • 0035245168 scopus 로고    scopus 로고
    • Avoiding exponential parameter growth in fuzzy systems
    • M.K. Güven, and K.M. Passino Avoiding exponential parameter growth in fuzzy systems IEEE Trans. Fuzzy Systems 9 1 2001 194 199
    • (2001) IEEE Trans. Fuzzy Systems , vol.9 , Issue.1 , pp. 194-199
    • Güven, M.K.1    Passino, K.M.2
  • 7
    • 0023033490 scopus 로고
    • An optimal algorithm for approximating a piecewise linear function
    • H. Imai, and M. Tri An optimal algorithm for approximating a piecewise linear function J. Inform. Process. 9 1986 159 162
    • (1986) J. Inform. Process. , vol.9 , pp. 159-162
    • Imai, H.1    Tri, M.2
  • 8
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka Selecting fuzzy if-then rules for classification problems using genetic algorithms IEEE Trans. Fuzzy Systems 3 4 1995 260 270
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , Issue.4 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 9
    • 0001321138 scopus 로고
    • On the representation of continuous functions of many variables by superpositions of continuous functions of one variable and addition
    • A.N. Kolmogorov On the representation of continuous functions of many variables by superpositions of continuous functions of one variable and addition Dokl. Akad. SSSR 114 1957 679 681 (in Russian)
    • (1957) Dokl. Akad. SSSR , vol.114 , pp. 679-681
    • Kolmogorov, A.N.1
  • 10
    • 0009980560 scopus 로고
    • Function approximation with additive fuzzy systems
    • H.T. Nguyen M. Sugeno R. Tong R.R. Yager Wiley New York
    • B. Kosko, and J.A. Dickerson Function approximation with additive fuzzy systems H.T. Nguyen M. Sugeno R. Tong R.R. Yager Theoretical Aspects of Fuzzy Control 1995 Wiley New York
    • (1995) Theoretical Aspects of Fuzzy Control
    • Kosko, B.1    Dickerson, J.A.2
  • 11
    • 0021626446 scopus 로고
    • Computational geometry - A survey
    • D.T. Lee, and F.P. Preparata Computational geometry - a survey IEEE Trans. Comput. 33 5 1984 1072 1101
    • (1984) IEEE Trans. Comput. , vol.33 , Issue.5 , pp. 1072-1101
    • Lee, D.T.1    Preparata, F.P.2
  • 14
    • 0028424412 scopus 로고
    • Why triangular membership functions?
    • W. Pedrycz Why triangular membership functions? Fuzzy Sets and Systems 64 1 1994 21 30
    • (1994) Fuzzy Sets and Systems , vol.64 , Issue.1 , pp. 21-30
    • Pedrycz, W.1
  • 16
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • H. Roubos, and M. Setnes Compact and transparent fuzzy models and classifiers through iterative complexity reduction IEEE Trans. Fuzzy Systems 9 4 2001 516 524
    • (2001) IEEE Trans. Fuzzy Systems , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 17
    • 0034244959 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for rule extraction
    • M. Setnes Supervised fuzzy clustering for rule extraction IEEE Trans. Fuzzy Systems 8 4 2000 416 424
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.4 , pp. 416-424
    • Setnes, M.1
  • 18
    • 0035325345 scopus 로고    scopus 로고
    • Rule base reduction: Some comments on the use of orthogonal transforms
    • T. Sudkamp, A. Knapp, and J. Knapp Rule base reduction some comments on the use of orthogonal transforms IEEE Trans. Systems Man Cybernet. C 31 3 2001 199 206
    • (2001) IEEE Trans. Systems Man Cybernet. C , vol.31 , Issue.3 , pp. 199-206
    • Sudkamp, T.1    Knapp, A.2    Knapp, J.3
  • 20
    • 0037544056 scopus 로고    scopus 로고
    • A survey on universal approximation and its limits in soft computing techniques
    • D. Tikk, L.T. Kóczy, and T.D. Gedeon A survey on universal approximation and its limits in soft computing techniques Internat. J. Approx. Reason. 33 2 2003 185 202
    • (2003) Internat. J. Approx. Reason. , vol.33 , Issue.2 , pp. 185-202
    • Tikk, D.1    Kóczy, L.T.2    Gedeon, T.D.3
  • 22
    • 0001263821 scopus 로고    scopus 로고
    • Universal approximation by hierarchical fuzzy systems
    • L.X. Wang Universal approximation by hierarchical fuzzy systems Fuzzy Sets and Systems 93 1998 223 230
    • (1998) Fuzzy Sets and Systems , vol.93 , pp. 223-230
    • Wang, L.X.1
  • 23
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximators, and orthogonal least-square learning
    • L.X. Wang, and J.M. Mendel Fuzzy basis functions, universal approximators, and orthogonal least-square learning IEEE Trans. Neural Networks 3 4 1993 807 814
    • (1993) IEEE Trans. Neural Networks , vol.3 , Issue.4 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 24
    • 0027632546 scopus 로고
    • Unified structure and parameter identification of fuzzy models
    • R.R. Yager, and D.P. Filev Unified structure and parameter identification of fuzzy models IEEE Trans. Systems Man Cybernet. 23 4 1993 1198 1205
    • (1993) IEEE Trans. Systems Man Cybernet. , vol.23 , Issue.4 , pp. 1198-1205
    • Yager, R.R.1    Filev, D.P.2
  • 25
    • 0033115927 scopus 로고    scopus 로고
    • Reduction of fuzzy rule base via singular value decomposition
    • Y. Yam, P. Baranyi, and C.T. Yang Reduction of fuzzy rule base via singular value decomposition IEEE Trans. Fuzzy Systems 7 2 1999 120 132
    • (1999) IEEE Trans. Fuzzy Systems , vol.7 , Issue.2 , pp. 120-132
    • Yam, Y.1    Baranyi, P.2    Yang, C.T.3
  • 26
    • 0032136218 scopus 로고    scopus 로고
    • Application of statistical information criteria for optimal fuzzy model construction
    • J. Yen, and L. Wang Application of statistical information criteria for optimal fuzzy model construction IEEE Trans. Fuzzy Systems 6 4 1998 362 372
    • (1998) IEEE Trans. Fuzzy Systems , vol.6 , Issue.4 , pp. 362-372
    • Yen, J.1    Wang, L.2
  • 27
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformation methods
    • J. Yen, and L. Wang Simplifying fuzzy rule-based models using orthogonal transformation methods IEEE Trans. Systems Man Cybernet. B 29 1 1999 13 24
    • (1999) IEEE Trans. Systems Man Cybernet. B , vol.29 , Issue.1 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 28
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • J. Yen, L. Wang, and C.W. Gillespie Improving the interpretability of TSK fuzzy models by combining global learning and local learning IEEE Trans. Fuzzy Systems 6 6 1998 530 537
    • (1998) IEEE Trans. Fuzzy Systems , vol.6 , Issue.6 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 29
    • 0028400629 scopus 로고
    • Sufficient conditions on general fuzzy systems as function approximations
    • H. Ying Sufficient conditions on general fuzzy systems as function approximations Automatica 30 3 1994 521 525
    • (1994) Automatica , vol.30 , Issue.3 , pp. 521-525
    • Ying, H.1
  • 31
    • 0031187917 scopus 로고    scopus 로고
    • Necessary conditions for some typical fuzzy systems as universal approximators
    • H. Ying, and G.R. Chen Necessary conditions for some typical fuzzy systems as universal approximators Automatica 33 7 1997 1333 1338
    • (1997) Automatica , vol.33 , Issue.7 , pp. 1333-1338
    • Ying, H.1    Chen, G.R.2
  • 32
    • 0028436491 scopus 로고
    • Approximation theory of fuzzy systems-SISO case
    • X.J. Zeng, and M.G. Singh Approximation theory of fuzzy systems-SISO case IEEE Trans. Fuzzy Systems 2 3 1994 162 176
    • (1994) IEEE Trans. Fuzzy Systems , vol.2 , Issue.3 , pp. 162-176
    • Zeng, X.J.1    Singh, M.G.2
  • 33
    • 0030082428 scopus 로고    scopus 로고
    • Approximation accuracy analysis of fuzzy systems as function approximators
    • X.J. Zeng, and M.G. Singh Approximation accuracy analysis of fuzzy systems as function approximators IEEE Trans. Fuzzy Systems 4 1 1996 44 63
    • (1996) IEEE Trans. Fuzzy Systems , vol.4 , Issue.1 , pp. 44-63
    • Zeng, X.J.1    Singh, M.G.2
  • 34
    • 0034476598 scopus 로고    scopus 로고
    • A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators
    • K. Zeng, N.Y. Zhang, and W.L. Xu A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators IEEE Trans. Fuzzy Systems 8 6 2000 773 780
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.6 , pp. 773-780
    • Zeng, K.1    Zhang, N.Y.2    Xu, W.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.