메뉴 건너뛰기




Volumn 19, Issue 1, 2008, Pages 62-72

Hierarchical method for determining the number of clusters

Author keywords

Clustering; Clustering validity index; Hierarchically clustering; Number of cluster; Statistics

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; STATISTICS;

EID: 39749159225     PISSN: 10009825     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1001.2008.00062     Document Type: Article
Times cited : (49)

References (21)
  • 1
    • 0442289065 scopus 로고    scopus 로고
    • Survey of clustering data mining techniques
    • Technical Report, San Jose: Accrue Software
    • Berkhin P, Survey of clustering data mining techniques. Technical Report, San Jose: Accrue Software, 2002.
    • (2002)
    • Berkhin, P.1
  • 2
    • 0003414440 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistic
    • Technical Report, 208, Stanford University
    • Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistic. Technical Report, 208, Stanford University, 2000.
    • (2000)
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 3
    • 10044254422 scopus 로고    scopus 로고
    • How many clusters? An information-theoretic perspective
    • Still S, Bialek W. How many clusters? An information-theoretic perspective. Neural Computation, 2004, 16(12): 2483-2506.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2483-2506
    • Still, S.1    Bialek, W.2
  • 4
    • 33845438621 scopus 로고    scopus 로고
    • Are clusters found in one dataset present in another dataset
    • Kapp AV, Tibshirani R. Are clusters found in one dataset present in another dataset? Biostatistics, 2007, 8(1): 9-31.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 9-31
    • Kapp, A.V.1    Tibshirani, R.2
  • 5
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters ia a dataset
    • Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters ia a dataset. Genome Biology, 2002, 3(7): 1-21.
    • (2002) Genome Biology , vol.3 , Issue.7 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 6
    • 0348096294 scopus 로고    scopus 로고
    • Clustering validity checking methods: Part II. ACM SIGMOD record archive
    • Halkidi M, Batistakis Y, Vazirgiannis M. Clustering validity checking methods: Part II. ACM SIGMOD Record Archive, 2002, 31(3): 19-27.
    • (2002) , vol.31 , Issue.3 , pp. 19-27
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 7
    • 33745841541 scopus 로고    scopus 로고
    • An objective approach to cluster validation
    • Bouguessa M, Wang S, Sun H. An objective approach to cluster validation. Pattern Recognition Letters, 2006, 27(13): 1419-1430.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.13 , pp. 1419-1430
    • Bouguessa, M.1    Wang, S.2    Sun, H.3
  • 9
    • 4544367326 scopus 로고    scopus 로고
    • FCM-Based model selection algorithms for determining the number of cluster
    • Sun H, Wang S, Jiang Q. FCM-Based model selection algorithms for determining the number of cluster. Pattern Recognition, 2004, 37(10): 2027-2037.
    • (2004) Pattern Recognition , vol.37 , Issue.10 , pp. 2027-2037
    • Sun, H.1    Wang, S.2    Jiang, Q.3
  • 10
    • 0036697414 scopus 로고    scopus 로고
    • Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation
    • in Chinese
    • Fan J, Wu C. Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation. Journal of Electronics and Information Technology, 2002, 24(8): 1017-1021 (in Chinese with English abstract).
    • (2002) Journal of Electronics and Information Technology , vol.24 , Issue.8 , pp. 1017-1021
    • Fan, J.1    Wu, C.2
  • 11
    • 1542350545 scopus 로고    scopus 로고
    • Research on the method of determining the optimal class number of fuzzy cluster
    • in Chinese
    • Sun C, Wang J, Pan J. Research on the method of determining the optimal class number of fuzzy cluster. Fuzzy Systems and Mathmatics, 2001, 15(1): 89-92 (in Chinese with English abstract).
    • (2001) Fuzzy Systems and Mathmatics , vol.15 , Issue.1 , pp. 89-92
    • Sun, C.1    Wang, J.2    Pan, J.3
  • 12
    • 39749182645 scopus 로고    scopus 로고
    • A new cluster validity index for fuzzy clustering
    • in Chinese
    • Hong Z, Jiang Q, Dong H, Wang S. A new cluster validity index for fuzzy clustering. Computer Science, 2004, 31(10): 121-125 (in Chinese with English abstract).
    • (2004) Computer Science , vol.31 , Issue.10 , pp. 121-125
    • Hong, Z.1    Jiang, Q.2    Dong, H.3    Wang, S.4
  • 13
    • 17244382029 scopus 로고    scopus 로고
    • Optimal number of clusters and the best partition in fuzzy C-mean
    • in Chinese
    • Zhu K, Su S, Li J. Optimal number of clusters and the best partition in fuzzy C-mean. Systems Engineering-Theory and Practice, 2005, 25(3): 52-61 (in Chinese with English abstract).
    • (2005) Systems Engineering-Theory and Practice , vol.25 , Issue.3 , pp. 52-61
    • Zhu, K.1    Su, S.2    Li, J.3
  • 14
    • 9744255892 scopus 로고    scopus 로고
    • Search range of the optimal number of clusters in fuzzy clustering
    • in Chinese
    • Yu J, Cheng G. Search range of the optimal number of clusters in fuzzy clustering. Science in China (Series E), 2002, 32(2): 274-280 (in Chinese with English abstract).
    • (2002) Science in China (Series E) , vol.32 , Issue.2 , pp. 274-280
    • Yu, J.1    Cheng, G.2
  • 15
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
    • Woo KG, Lee JH, Kim MH, Lee YJ. FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting. Information and Software Technology, 2004, 46(4): 255-271.
    • (2004) Information and Software Technology , vol.46 , Issue.4 , pp. 255-271
    • Woo, K.G.1    Lee, J.H.2    Kim, M.H.3    Lee, Y.J.4
  • 16
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Simoudis E., Han J.W. and Fayyad U.M.(ed.), Portland: AAAI Press
    • Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han JW, Fayyad UM, eds. Proc. of the ACM-SIGKDD. Portland: AAAI Press, 1996. 226-231.
    • (1996) Proc. of the ACM-SIGKDD , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 17
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • Jagadish H.V. and Mumick I.S.(ed.), New York: ACM Press
    • Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS, eds. Proc. of the ACM-SIGMOD. New York: ACM Press, 1996. 103-114.
    • (1996) Proc. of the ACM-SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 19
    • 78149337520 scopus 로고    scopus 로고
    • A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets
    • Kumar V. and Tsumoto S.(ed.), Los Alamitos: IEEE Computer Society Press
    • Foss A, Zaiane OR. A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets. In: Kumar V, Tsumoto S, eds. Proc. of the TCDM. Los Alamitos: IEEE Computer Society Press, 2002. 179-186.
    • (2002) Proc. of the TCDM , pp. 179-186
    • Foss, A.1    Zaiane, O.R.2
  • 20
    • 22944453351 scopus 로고    scopus 로고
    • Cluster validation for high dimensional datasets
    • LNCS 3192, Berlin, Heidelberg
    • Kim M, Yoo H, Ramakrishna RS. Cluster validation for high dimensional datasets. In: Proc. of the AIMSA. LNCS 3192, Berlin, Heidelberg, 2004. 178-187.
    • (2004) Proc. of the AIMSA , pp. 178-187
    • Kim, M.1    Yoo, H.2    Ramakrishna, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.