-
1
-
-
0442289065
-
Survey of clustering data mining techniques
-
Technical Report, San Jose: Accrue Software
-
Berkhin P, Survey of clustering data mining techniques. Technical Report, San Jose: Accrue Software, 2002.
-
(2002)
-
-
Berkhin, P.1
-
2
-
-
0003414440
-
Estimating the number of clusters in a dataset via the gap statistic
-
Technical Report, 208, Stanford University
-
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistic. Technical Report, 208, Stanford University, 2000.
-
(2000)
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
3
-
-
10044254422
-
How many clusters? An information-theoretic perspective
-
Still S, Bialek W. How many clusters? An information-theoretic perspective. Neural Computation, 2004, 16(12): 2483-2506.
-
(2004)
Neural Computation
, vol.16
, Issue.12
, pp. 2483-2506
-
-
Still, S.1
Bialek, W.2
-
4
-
-
33845438621
-
Are clusters found in one dataset present in another dataset
-
Kapp AV, Tibshirani R. Are clusters found in one dataset present in another dataset? Biostatistics, 2007, 8(1): 9-31.
-
(2007)
Biostatistics
, vol.8
, Issue.1
, pp. 9-31
-
-
Kapp, A.V.1
Tibshirani, R.2
-
5
-
-
0037172724
-
A prediction-based resampling method for estimating the number of clusters ia a dataset
-
Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters ia a dataset. Genome Biology, 2002, 3(7): 1-21.
-
(2002)
Genome Biology
, vol.3
, Issue.7
, pp. 1-21
-
-
Dudoit, S.1
Fridlyand, J.2
-
6
-
-
0348096294
-
Clustering validity checking methods: Part II. ACM SIGMOD record archive
-
Halkidi M, Batistakis Y, Vazirgiannis M. Clustering validity checking methods: Part II. ACM SIGMOD Record Archive, 2002, 31(3): 19-27.
-
(2002)
, vol.31
, Issue.3
, pp. 19-27
-
-
Halkidi, M.1
Batistakis, Y.2
Vazirgiannis, M.3
-
7
-
-
33745841541
-
An objective approach to cluster validation
-
Bouguessa M, Wang S, Sun H. An objective approach to cluster validation. Pattern Recognition Letters, 2006, 27(13): 1419-1430.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.13
, pp. 1419-1430
-
-
Bouguessa, M.1
Wang, S.2
Sun, H.3
-
9
-
-
4544367326
-
FCM-Based model selection algorithms for determining the number of cluster
-
Sun H, Wang S, Jiang Q. FCM-Based model selection algorithms for determining the number of cluster. Pattern Recognition, 2004, 37(10): 2027-2037.
-
(2004)
Pattern Recognition
, vol.37
, Issue.10
, pp. 2027-2037
-
-
Sun, H.1
Wang, S.2
Jiang, Q.3
-
10
-
-
0036697414
-
Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation
-
in Chinese
-
Fan J, Wu C. Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation. Journal of Electronics and Information Technology, 2002, 24(8): 1017-1021 (in Chinese with English abstract).
-
(2002)
Journal of Electronics and Information Technology
, vol.24
, Issue.8
, pp. 1017-1021
-
-
Fan, J.1
Wu, C.2
-
11
-
-
1542350545
-
Research on the method of determining the optimal class number of fuzzy cluster
-
in Chinese
-
Sun C, Wang J, Pan J. Research on the method of determining the optimal class number of fuzzy cluster. Fuzzy Systems and Mathmatics, 2001, 15(1): 89-92 (in Chinese with English abstract).
-
(2001)
Fuzzy Systems and Mathmatics
, vol.15
, Issue.1
, pp. 89-92
-
-
Sun, C.1
Wang, J.2
Pan, J.3
-
12
-
-
39749182645
-
A new cluster validity index for fuzzy clustering
-
in Chinese
-
Hong Z, Jiang Q, Dong H, Wang S. A new cluster validity index for fuzzy clustering. Computer Science, 2004, 31(10): 121-125 (in Chinese with English abstract).
-
(2004)
Computer Science
, vol.31
, Issue.10
, pp. 121-125
-
-
Hong, Z.1
Jiang, Q.2
Dong, H.3
Wang, S.4
-
13
-
-
17244382029
-
Optimal number of clusters and the best partition in fuzzy C-mean
-
in Chinese
-
Zhu K, Su S, Li J. Optimal number of clusters and the best partition in fuzzy C-mean. Systems Engineering-Theory and Practice, 2005, 25(3): 52-61 (in Chinese with English abstract).
-
(2005)
Systems Engineering-Theory and Practice
, vol.25
, Issue.3
, pp. 52-61
-
-
Zhu, K.1
Su, S.2
Li, J.3
-
14
-
-
9744255892
-
Search range of the optimal number of clusters in fuzzy clustering
-
in Chinese
-
Yu J, Cheng G. Search range of the optimal number of clusters in fuzzy clustering. Science in China (Series E), 2002, 32(2): 274-280 (in Chinese with English abstract).
-
(2002)
Science in China (Series E)
, vol.32
, Issue.2
, pp. 274-280
-
-
Yu, J.1
Cheng, G.2
-
15
-
-
0742324835
-
FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
-
Woo KG, Lee JH, Kim MH, Lee YJ. FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting. Information and Software Technology, 2004, 46(4): 255-271.
-
(2004)
Information and Software Technology
, vol.46
, Issue.4
, pp. 255-271
-
-
Woo, K.G.1
Lee, J.H.2
Kim, M.H.3
Lee, Y.J.4
-
16
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Simoudis E., Han J.W. and Fayyad U.M.(ed.), Portland: AAAI Press
-
Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han JW, Fayyad UM, eds. Proc. of the ACM-SIGKDD. Portland: AAAI Press, 1996. 226-231.
-
(1996)
Proc. of the ACM-SIGKDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
17
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
Jagadish H.V. and Mumick I.S.(ed.), New York: ACM Press
-
Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS, eds. Proc. of the ACM-SIGMOD. New York: ACM Press, 1996. 103-114.
-
(1996)
Proc. of the ACM-SIGMOD
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
18
-
-
33645537068
-
Multi-Step density-based clustering
-
Brecheisen S, Kriegel HP, Pfeifle M. Multi-Step density-based clustering. Knowledge and Information Systems, 2006, 9(3): 284-308.
-
(2006)
Knowledge and Information Systems
, vol.9
, Issue.3
, pp. 284-308
-
-
Brecheisen, S.1
Kriegel, H.P.2
Pfeifle, M.3
-
19
-
-
78149337520
-
A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets
-
Kumar V. and Tsumoto S.(ed.), Los Alamitos: IEEE Computer Society Press
-
Foss A, Zaiane OR. A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets. In: Kumar V, Tsumoto S, eds. Proc. of the TCDM. Los Alamitos: IEEE Computer Society Press, 2002. 179-186.
-
(2002)
Proc. of the TCDM
, pp. 179-186
-
-
Foss, A.1
Zaiane, O.R.2
-
20
-
-
22944453351
-
Cluster validation for high dimensional datasets
-
LNCS 3192, Berlin, Heidelberg
-
Kim M, Yoo H, Ramakrishna RS. Cluster validation for high dimensional datasets. In: Proc. of the AIMSA. LNCS 3192, Berlin, Heidelberg, 2004. 178-187.
-
(2004)
Proc. of the AIMSA
, pp. 178-187
-
-
Kim, M.1
Yoo, H.2
Ramakrishna, R.S.3
-
21
-
-
23944436897
-
Automatic subspace clustering of high dimensional data
-
Agrawal R, Gehrke J, Gunopulos D, Raghavan P, Automatic subspace clustering of high dimensional data. Data Mining and Knowledge Discovery, 2005, 11(1): 5-33.
-
(2005)
Data Mining and Knowledge Discovery
, vol.11
, Issue.1
, pp. 5-33
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
|