-
1
-
-
0026416043
-
Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate
-
Martin J., Langer T., Boteva R., Schramel A., Horwich A.L., and Hartl F.U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352 (1991) 36-42
-
(1991)
Nature
, vol.352
, pp. 36-42
-
-
Martin, J.1
Langer, T.2
Boteva, R.3
Schramel, A.4
Horwich, A.L.5
Hartl, F.U.6
-
2
-
-
0025820393
-
Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese
-
Mendoza J.A., Rogers E., Lorimer G.H., and Horowitz P.M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. Biol. Chem. 266 (1991) 13044-13049
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 13044-13049
-
-
Mendoza, J.A.1
Rogers, E.2
Lorimer, G.H.3
Horowitz, P.M.4
-
3
-
-
0036289894
-
GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation
-
Melkani G.C., Zardeneta G., and Mendoza J.A. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation. Biochem. Biophys. Res Commun. 294 (2002) 893-899
-
(2002)
Biochem. Biophys. Res Commun.
, vol.294
, pp. 893-899
-
-
Melkani, G.C.1
Zardeneta, G.2
Mendoza, J.A.3
-
5
-
-
0024820705
-
GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli
-
Goloubinoff P., Christeller J.T., Gatenby A.A., and Lorimer G.H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 342 (1989) 884-889
-
(1989)
Nature
, vol.342
, pp. 884-889
-
-
Goloubinoff, P.1
Christeller, J.T.2
Gatenby, A.A.3
Lorimer, G.H.4
-
6
-
-
0027943510
-
The crystal structure of the bacterial chaperonin GroEL at 2.8 A
-
Braig K., Otwinowski Z., Hedge R., Boisvert D.C., Joachimiak A., Horwich A.L., and Sigler P.B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371 (1994) 578-586
-
(1994)
Nature
, vol.371
, pp. 578-586
-
-
Braig, K.1
Otwinowski, Z.2
Hedge, R.3
Boisvert, D.C.4
Joachimiak, A.5
Horwich, A.L.6
Sigler, P.B.7
-
7
-
-
0028113299
-
Residues in chaperonin GroEL required for polypeptide binding and release
-
Fenton W.A., Kashi Y., Furtak K., and Horwich A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371 (1994) 614-619
-
(1994)
Nature
, vol.371
, pp. 614-619
-
-
Fenton, W.A.1
Kashi, Y.2
Furtak, K.3
Horwich, A.L.4
-
8
-
-
0029873545
-
Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor
-
Teshima S., Rokutan K., Takahashi M., Nikawa T., and Kishi K. Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor. Biochem. J. 315 (1996) 497-504
-
(1996)
Biochem. J.
, vol.315
, pp. 497-504
-
-
Teshima, S.1
Rokutan, K.2
Takahashi, M.3
Nikawa, T.4
Kishi, K.5
-
9
-
-
0028120804
-
Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide
-
Ericsson M.C., Tarnvik A., Kuoppa K., Sandstrom G., and Sjostedt A. Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect. Immun. 62 (1994) 178-183
-
(1994)
Infect. Immun.
, vol.62
, pp. 178-183
-
-
Ericsson, M.C.1
Tarnvik, A.2
Kuoppa, K.3
Sandstrom, G.4
Sjostedt, A.5
-
10
-
-
0028826678
-
Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses
-
Hanawa T., Yamamoto T., and Kamiya S. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect. Immun. 63 (1995) 4595-4599
-
(1995)
Infect. Immun.
, vol.63
, pp. 4595-4599
-
-
Hanawa, T.1
Yamamoto, T.2
Kamiya, S.3
-
12
-
-
33745924414
-
Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide
-
Melkani G.C., Kestetter J., Sielaff R., Zardeneta G., and Mendoza J.A. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide. Biochem. Biophys. Res. Commun. 347 (2006) 534-539
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.347
, pp. 534-539
-
-
Melkani, G.C.1
Kestetter, J.2
Sielaff, R.3
Zardeneta, G.4
Mendoza, J.A.5
-
13
-
-
0348110316
-
Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese
-
Melkani G.C., McNamara C., Zardeneta G., and Mendoza J.A. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese. Int. J. Biochem. Cell Biol. 36 (2004) 505-518
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, pp. 505-518
-
-
Melkani, G.C.1
McNamara, C.2
Zardeneta, G.3
Mendoza, J.A.4
-
14
-
-
0034705167
-
Protein oxidation in response to increased transcriptional or translational errors
-
Dukan S., Farewell A., Ballesteros M., Taddei F., Radman M., and Nystrom T. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl. Acad. Sci. USA 97 (2000) 5746-5749
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 5746-5749
-
-
Dukan, S.1
Farewell, A.2
Ballesteros, M.3
Taddei, F.4
Radman, M.5
Nystrom, T.6
-
15
-
-
0034282468
-
Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae
-
Cabiscol E., Piulats E., Echave P., Herrero E., and Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275 (2000) 27393-27398
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 27393-27398
-
-
Cabiscol, E.1
Piulats, E.2
Echave, P.3
Herrero, E.4
Ros, J.5
-
16
-
-
0030795074
-
Enhanced hydrogen peroxide sensitivity and altered stress protein expression in iron-starved Mycobacterium smegmatis
-
Lundrigan M.D., Arceneaux J.E., Zhu W., and Byers B.R. Enhanced hydrogen peroxide sensitivity and altered stress protein expression in iron-starved Mycobacterium smegmatis. Biometals 3 (1997) 215-225
-
(1997)
Biometals
, vol.3
, pp. 215-225
-
-
Lundrigan, M.D.1
Arceneaux, J.E.2
Zhu, W.3
Byers, B.R.4
-
17
-
-
0028286158
-
Effect of divalent cations on the molecular structure of the GroEL oligomer
-
Azem A., Diamant S., and Goloubinoff P. Effect of divalent cations on the molecular structure of the GroEL oligomer. Biochemistry 33 (1994) 6671-6675
-
(1994)
Biochemistry
, vol.33
, pp. 6671-6675
-
-
Azem, A.1
Diamant, S.2
Goloubinoff, P.3
-
18
-
-
0028902882
-
Effect of free and ATP-bound magnesium and manganese ions on the ATPase activity of chaperonin GroEL14
-
Diamant S., Azem A., Weiss C., and Goloubinoff P. Effect of free and ATP-bound magnesium and manganese ions on the ATPase activity of chaperonin GroEL14. Biochemistry 34 (1995) 273-277
-
(1995)
Biochemistry
, vol.34
, pp. 273-277
-
-
Diamant, S.1
Azem, A.2
Weiss, C.3
Goloubinoff, P.4
-
19
-
-
0028824348
-
Increased efficiency of GroE-assisted protein folding by manganese ions
-
Diamant S., Azem A., Weiss C., and Goloubinoff P. Increased efficiency of GroE-assisted protein folding by manganese ions. J. Biol. Chem. 270 (1995) 28387-28391
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 28387-28391
-
-
Diamant, S.1
Azem, A.2
Weiss, C.3
Goloubinoff, P.4
-
20
-
-
0028899753
-
Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer
-
Horowitz P.M., Hua S., and Gibbons D.L. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer. J. Biol. Chem. 270 (1995) 1535-1542
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 1535-1542
-
-
Horowitz, P.M.1
Hua, S.2
Gibbons, D.L.3
-
21
-
-
0030061191
-
Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide
-
Mendoza J.A., and Del Campo G. Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide. J. Biol. Chem. 271 (1996) 16344-16349
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 16344-16349
-
-
Mendoza, J.A.1
Del Campo, G.2
-
22
-
-
0030029313
-
Ligand-induced conformational changes in the apical domain of the chaperonin GroEL
-
Gibbons D.L., and Horowitz P.M. Ligand-induced conformational changes in the apical domain of the chaperonin GroEL. J. Biol. Chem. 271 (1996) 238-243
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 238-243
-
-
Gibbons, D.L.1
Horowitz, P.M.2
-
23
-
-
0032488820
-
Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions
-
Brazil B.T., Ybarra J., and Horowitz P.M. Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions. J. Biol. Chem. 273 (1998) 3257-3263
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 3257-3263
-
-
Brazil, B.T.1
Ybarra, J.2
Horowitz, P.M.3
-
24
-
-
0037412020
-
The ATPase activity of GroEL is supported at high temperature by divalent cations that stabilize its structure
-
Melkani G.C., Zardeneta G., and Mendoza J.A. The ATPase activity of GroEL is supported at high temperature by divalent cations that stabilize its structure. BioMetals 16 (2003) 479-484
-
(2003)
BioMetals
, vol.16
, pp. 479-484
-
-
Melkani, G.C.1
Zardeneta, G.2
Mendoza, J.A.3
-
25
-
-
0030929819
-
Ligands regulate GroEL thermostability
-
Surin A.K., Kotova N.V., Kashparov I.A., Marchenkov V.V., Marchenkova S.Y., and Semisotnov G.V. Ligands regulate GroEL thermostability. FEBS Lett. 405 (1997) 260-262
-
(1997)
FEBS Lett.
, vol.405
, pp. 260-262
-
-
Surin, A.K.1
Kotova, N.V.2
Kashparov, I.A.3
Marchenkov, V.V.4
Marchenkova, S.Y.5
Semisotnov, G.V.6
-
26
-
-
0345369494
-
Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells
-
Tate Jr. D.J., Miceli M.V., and Newsome D.A. Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells. Free Radic. Biol. Med. 27 (1999) 704-713
-
(1999)
Free Radic. Biol. Med.
, vol.27
, pp. 704-713
-
-
Tate Jr., D.J.1
Miceli, M.V.2
Newsome, D.A.3
-
27
-
-
0031918147
-
Purification of GroEL with low fluorescence background
-
Clark A.C., Ramanathan R., and Frieden C. Purification of GroEL with low fluorescence background. Methods Enzymol. 290 (1998) 100-118
-
(1998)
Methods Enzymol.
, vol.290
, pp. 100-118
-
-
Clark, A.C.1
Ramanathan, R.2
Frieden, C.3
-
28
-
-
0029882517
-
Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL
-
Clark A.C., Hugo E., and Frieden C. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry 35 (1996) 5893-5901
-
(1996)
Biochemistry
, vol.35
, pp. 5893-5901
-
-
Clark, A.C.1
Hugo, E.2
Frieden, C.3
-
29
-
-
0026233969
-
Purification of bovine liver rhodanese by low-pH column chromatography
-
Kurzban G.P., and Horowitz P.M. Purification of bovine liver rhodanese by low-pH column chromatography. Protein Expr. Purif. 2 (1991) 379-384
-
(1991)
Protein Expr. Purif.
, vol.2
, pp. 379-384
-
-
Kurzban, G.P.1
Horowitz, P.M.2
-
30
-
-
0014949207
-
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
-
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 680-685
-
(1970)
Nature
, vol.227
, pp. 680-685
-
-
Laemmli, U.K.1
-
31
-
-
0026489533
-
Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese
-
Mendoza J.A., Butler M.C., and Horowitz P.M. Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese. J. Biol. Chem. 267 (1992) 24648-24654
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 24648-24654
-
-
Mendoza, J.A.1
Butler, M.C.2
Horowitz, P.M.3
-
32
-
-
0028245961
-
Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome
-
Giulivi C., Pacifici R.E., and Davies K.J.A. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch. Biochem. Biophys. 311 (1994) 329-341
-
(1994)
Arch. Biochem. Biophys.
, vol.311
, pp. 329-341
-
-
Giulivi, C.1
Pacifici, R.E.2
Davies, K.J.A.3
-
33
-
-
0027414020
-
Dityrosine and tyrosine oxidations are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteasome
-
Giulivi C., and Davies K.J.A. Dityrosine and tyrosine oxidations are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteasome. J. Biol. Chem. 268 (1993) 8752-8759
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 8752-8759
-
-
Giulivi, C.1
Davies, K.J.A.2
-
34
-
-
0014589353
-
Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties
-
Rosen C.G., and Weber G. Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry 8 (1969) 3915-3920
-
(1969)
Biochemistry
, vol.8
, pp. 3915-3920
-
-
Rosen, C.G.1
Weber, G.2
|