-
1
-
-
0029873545
-
Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor
-
Teshima S., Rokutan K., Takahashi M., Nikawa T., and Kishi K. Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor. Biochem. J. 315 (1996) 497-504
-
(1996)
Biochem. J.
, vol.315
, pp. 497-504
-
-
Teshima, S.1
Rokutan, K.2
Takahashi, M.3
Nikawa, T.4
Kishi, K.5
-
2
-
-
0028120804
-
Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide
-
Ericsson M.C., Tarnvik A., Kuoppa K., Sandstrom G., and Sjostedt A. Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect. Immun. 62 (1994) 178-183
-
(1994)
Infect. Immun.
, vol.62
, pp. 178-183
-
-
Ericsson, M.C.1
Tarnvik, A.2
Kuoppa, K.3
Sandstrom, G.4
Sjostedt, A.5
-
3
-
-
0028826678
-
Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses
-
Hanawa T., Yamamoto T., and Kamiya S. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect. Immun. 63 (1995) 4595-4599
-
(1995)
Infect. Immun.
, vol.63
, pp. 4595-4599
-
-
Hanawa, T.1
Yamamoto, T.2
Kamiya, S.3
-
5
-
-
0037039295
-
Isolation and characterization of rhodanese intermediates during thermal inactivation and their implications for the mechanism of protein aggregation
-
Bhattacharyya A.M., and Horowitz P.M. Isolation and characterization of rhodanese intermediates during thermal inactivation and their implications for the mechanism of protein aggregation. Biochemistry 41 (2002) 422-429
-
(2002)
Biochemistry
, vol.41
, pp. 422-429
-
-
Bhattacharyya, A.M.1
Horowitz, P.M.2
-
6
-
-
0036289894
-
GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation
-
Melkani G.C., Zardeneta G., and Mendoza J.A. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation. Biochem. Biophys. Res. Commun. 294 (2002) 893-899
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.294
, pp. 893-899
-
-
Melkani, G.C.1
Zardeneta, G.2
Mendoza, J.A.3
-
7
-
-
0034705167
-
Protein oxidation in response to increased transcriptional or translational errors
-
Dukan S., Farewell A., Ballesteros M., Taddei F., Radman M., and Nystrom T. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl. Acad. Sci. USA 97 (2000) 5746-5749
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 5746-5749
-
-
Dukan, S.1
Farewell, A.2
Ballesteros, M.3
Taddei, F.4
Radman, M.5
Nystrom, T.6
-
8
-
-
0034282468
-
Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae
-
Cabiscol E., Piulats E., Echave P., Herrero E., and Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275 (2000) 27393-27398
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 27393-27398
-
-
Cabiscol, E.1
Piulats, E.2
Echave, P.3
Herrero, E.4
Ros, J.5
-
9
-
-
0033558952
-
Methionine residues may protect proteins from critical oxidative damage
-
Levine R.L., Berltt B.S., Moskovitz J., Mosoni L., and Stadtman E.R. Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 107 (1999) 323-332
-
(1999)
Mech. Ageing Dev.
, vol.107
, pp. 323-332
-
-
Levine, R.L.1
Berltt, B.S.2
Moskovitz, J.3
Mosoni, L.4
Stadtman, E.R.5
-
11
-
-
0034456721
-
Oxidation of methionine in proteins: roles in defense and cellular regulation
-
Levine R.L., Moskovitz J., and Stadtman E.R. Oxidation of methionine in proteins: roles in defense and cellular regulation. IUBMB Life 50 (2000) 301-307
-
(2000)
IUBMB Life
, vol.50
, pp. 301-307
-
-
Levine, R.L.1
Moskovitz, J.2
Stadtman, E.R.3
-
12
-
-
0035966062
-
Repair of oxidized proteins: identification of new sulfoxide reductase
-
Grimaud R., Ezraty B., Mitchell J.K., Lafitte D., Briand C., Derrick P.J., and Barras F. Repair of oxidized proteins: identification of new sulfoxide reductase. J. Biol. Chem. 276 (2001) 48915-48920
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 48915-48920
-
-
Grimaud, R.1
Ezraty, B.2
Mitchell, J.K.3
Lafitte, D.4
Briand, C.5
Derrick, P.J.6
Barras, F.7
-
13
-
-
0036297758
-
Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity
-
Moskovitz J., Singh V.K., Requena J., Wilkison B.J., Jayaswal R.K., and Stadtman E.R. Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem. Biophys. Res. Commun. 290 (2002) 62-65
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.290
, pp. 62-65
-
-
Moskovitz, J.1
Singh, V.K.2
Requena, J.3
Wilkison, B.J.4
Jayaswal, R.K.5
Stadtman, E.R.6
-
14
-
-
0031885987
-
Loss of conformational stability in the calmodulin upon methionine oxidation
-
Gao J., Yin D.H., Yao Y., Sun H., Qin Z., Schoneich C., Williams T.D., and Squier T.C. Loss of conformational stability in the calmodulin upon methionine oxidation. Biophys. J. 74 (1998) 1115-1134
-
(1998)
Biophys. J.
, vol.74
, pp. 1115-1134
-
-
Gao, J.1
Yin, D.H.2
Yao, Y.3
Sun, H.4
Qin, Z.5
Schoneich, C.6
Williams, T.D.7
Squier, T.C.8
-
15
-
-
0033537843
-
Oxidation of methionine residues: effects on biological activity and heparin binding
-
Van Patten S.M., Hanson E., Bernasconi R., Zhang K., Manavalan P., Cole E.S., McPherson J.M., and Edmunds T. Oxidation of methionine residues: effects on biological activity and heparin binding. J. Biol. Chem. 274 (1999) 10268-10276
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 10268-10276
-
-
Van Patten, S.M.1
Hanson, E.2
Bernasconi, R.3
Zhang, K.4
Manavalan, P.5
Cole, E.S.6
McPherson, J.M.7
Edmunds, T.8
-
16
-
-
0345009031
-
Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer
-
Gustavsson N., Harndahl U., Emanuelsson A., Roepstorff P., and Sundby C. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer. Protein Sci. 8 (1999) 2506-2512
-
(1999)
Protein Sci.
, vol.8
, pp. 2506-2512
-
-
Gustavsson, N.1
Harndahl, U.2
Emanuelsson, A.3
Roepstorff, P.4
Sundby, C.5
-
18
-
-
0031918147
-
Purification of GroEL with low fluorescence background
-
Clark A.C., Ramanathan R., and Frieden C. Purification of GroEL with low fluorescence background. Methods Enzymol. 290 (1998) 100-118
-
(1998)
Methods Enzymol.
, vol.290
, pp. 100-118
-
-
Clark, A.C.1
Ramanathan, R.2
Frieden, C.3
-
19
-
-
0029882517
-
Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL
-
Clark A.C., Hugo E., and Frieden C. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry 35 (1996) 5893-5901
-
(1996)
Biochemistry
, vol.35
, pp. 5893-5901
-
-
Clark, A.C.1
Hugo, E.2
Frieden, C.3
-
20
-
-
0021021424
-
Oxidation of methionine residues in proteins of activated human neutrophils
-
Fliss H., Weissbach H., and Brot N. Oxidation of methionine residues in proteins of activated human neutrophils. Proc. Natl. Acad. Sci. USA 80 (1983) 7160-7164
-
(1983)
Proc. Natl. Acad. Sci. USA
, vol.80
, pp. 7160-7164
-
-
Fliss, H.1
Weissbach, H.2
Brot, N.3
-
21
-
-
0026620951
-
Sulfhydryl modification of E. coli Cpn60 leads to loss of its ability to support refolding of rhodanese but not to form a binary complex
-
Mendoza J.A., and Horowitz P.M. Sulfhydryl modification of E. coli Cpn60 leads to loss of its ability to support refolding of rhodanese but not to form a binary complex. J. Protein Chem. 11 (1992) 589-594
-
(1992)
J. Protein Chem.
, vol.11
, pp. 589-594
-
-
Mendoza, J.A.1
Horowitz, P.M.2
-
22
-
-
0030569511
-
The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures
-
Mendoza J.A., Warren T., and Dulin P. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures. Biochem. Biophys. Res. Commun. 229 (1996) 271-274
-
(1996)
Biochem. Biophys. Res. Commun.
, vol.229
, pp. 271-274
-
-
Mendoza, J.A.1
Warren, T.2
Dulin, P.3
-
23
-
-
0026702578
-
Chaperonin cpn60 from E. coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures
-
Mendoza J.A., Lorimer G.H., and Horowitz P.M. Chaperonin cpn60 from E. coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J. Biol. Chem. 267 (1992) 17631-17634
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 17631-17634
-
-
Mendoza, J.A.1
Lorimer, G.H.2
Horowitz, P.M.3
-
24
-
-
0034478124
-
The lower hydrolysis of ATP by stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature
-
Mendoza J.A., Dulin P., and Warren T. The lower hydrolysis of ATP by stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Cryobiology 41 (2000) 319-323
-
(2000)
Cryobiology
, vol.41
, pp. 319-323
-
-
Mendoza, J.A.1
Dulin, P.2
Warren, T.3
-
25
-
-
0026233969
-
Purification of bovine liver rhodanese by low-pH column chromatography
-
Kurzban G.P., and Horowitz P.M. Purification of bovine liver rhodanese by low-pH column chromatography. Protein Expr. Purif. 2 (1991) 379-384
-
(1991)
Protein Expr. Purif.
, vol.2
, pp. 379-384
-
-
Kurzban, G.P.1
Horowitz, P.M.2
-
26
-
-
0017798493
-
The covalent and tertiary structure of bovine liver rhodanese
-
Ploegman J.H., Drent G., Kalk K.H., Hol W.G.J., Heinrikson R.L., Keim P., Weng L., and Russel J. The covalent and tertiary structure of bovine liver rhodanese. Nature 273 (1978) 124-129
-
(1978)
Nature
, vol.273
, pp. 124-129
-
-
Ploegman, J.H.1
Drent, G.2
Kalk, K.H.3
Hol, W.G.J.4
Heinrikson, R.L.5
Keim, P.6
Weng, L.7
Russel, J.8
-
27
-
-
0348110316
-
Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese
-
Melkani G.C., McNamara C., Zardeneta G., and Mendoza J.A. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese. Int. J. Biochem. Cell Biol. 36 (2004) 505-518
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, pp. 505-518
-
-
Melkani, G.C.1
McNamara, C.2
Zardeneta, G.3
Mendoza, J.A.4
-
28
-
-
0028852816
-
Oxidation of methionine residues in proteins: tools, targets and reversal
-
Vogt W. Oxidation of methionine residues in proteins: tools, targets and reversal. Free Radic. Biol. Med. 18 (1995) 93-105
-
(1995)
Free Radic. Biol. Med.
, vol.18
, pp. 93-105
-
-
Vogt, W.1
-
29
-
-
0027525938
-
The strongly conserved carboxyl-terminus glycine-methionine motif of the E. coli GroEL chaperonin is dispensable
-
Mclennan N.F., Girshovich A.S., Lissin N.M., Charters Y., and Masters M. The strongly conserved carboxyl-terminus glycine-methionine motif of the E. coli GroEL chaperonin is dispensable. Mol. Microbiol. 7 (1993) 49-58
-
(1993)
Mol. Microbiol.
, vol.7
, pp. 49-58
-
-
Mclennan, N.F.1
Girshovich, A.S.2
Lissin, N.M.3
Charters, Y.4
Masters, M.5
-
30
-
-
0028052959
-
Direct demonstration that ATP is in contact with Cys-137 in chaperonin GroEL
-
Bochkareva E.S., Horovitz A., and Girshovich A.S. Direct demonstration that ATP is in contact with Cys-137 in chaperonin GroEL. J. Biol. Chem. 269 (1994) 44-46
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 44-46
-
-
Bochkareva, E.S.1
Horovitz, A.2
Girshovich, A.S.3
-
31
-
-
0030589172
-
Dityrosine: preparation, isolation, and analysis
-
Malencik D.A., Sprouse J.F., Swanson C.A., and Anderson S.R. Dityrosine: preparation, isolation, and analysis. Anal. Biochem. 242 (1996) 202-213
-
(1996)
Anal. Biochem.
, vol.242
, pp. 202-213
-
-
Malencik, D.A.1
Sprouse, J.F.2
Swanson, C.A.3
Anderson, S.R.4
-
32
-
-
0034610314
-
Structural studies on some dityrosine-cross-linked globular proteins: stability is weakened, but activity is not abolished
-
Kanwar R., and Balasubramanian D. Structural studies on some dityrosine-cross-linked globular proteins: stability is weakened, but activity is not abolished. Biochemistry 39 (2000) 14976-14983
-
(2000)
Biochemistry
, vol.39
, pp. 14976-14983
-
-
Kanwar, R.1
Balasubramanian, D.2
-
33
-
-
0037412020
-
The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure
-
Melkani G.C., Zardeneta G., and Mendoza J.A. The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure. BioMetals 16 (2003) 479-484
-
(2003)
BioMetals
, vol.16
, pp. 479-484
-
-
Melkani, G.C.1
Zardeneta, G.2
Mendoza, J.A.3
-
34
-
-
0026489533
-
Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese
-
Mendoza J.A., Butler M.C., and Horowitz P.M. Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese. J. Biol. Chem. (1992) 24648-24654
-
(1992)
J. Biol. Chem.
, pp. 24648-24654
-
-
Mendoza, J.A.1
Butler, M.C.2
Horowitz, P.M.3
|