-
1
-
-
0026584271
-
Protein folding in the cell
-
M.J. Gething, & J. Sambrook: Protein folding in the cell. Nature 355, 33-45 (1992)
-
(1992)
Nature
, vol.355
, pp. 33-45
-
-
Gething, M.J.1
Sambrook, J.2
-
2
-
-
0027184721
-
Molecular chaperone functions of heat-shock proteins
-
J.P. Hendrick & F.U. Hartl: Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62, 349-384 (1993)
-
(1993)
Annu Rev Biochem
, vol.62
, pp. 349-384
-
-
Hendrick, J.P.1
Hartl, F.U.2
-
3
-
-
0026416043
-
Chaperonin-mediated protein folding at the surface of GroEL through a 'molten globule'-like intermediate
-
J. Martin, T. Langer, R. Boteva, A. Schramel, A.L. Horwich & F.U. Hartl: Chaperonin-mediated protein folding at the surface of GroEL through a 'molten globule'-like intermediate. Nature 352, 36-42 (1991)
-
(1991)
Nature
, vol.352
, pp. 36-42
-
-
Martin, J.1
Langer, T.2
Boteva, R.3
Schramel, A.4
Horwich, A.L.5
Hartl, F.U.6
-
4
-
-
0025820393
-
Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese
-
J.A. Mendoza, E. Rogers, G.H. Lorimer & P.M. Horowitz: Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J Biol Chem 266, 13044-13049 (1991)
-
(1991)
J Biol Chem
, vol.266
, pp. 13044-13049
-
-
Mendoza, J.A.1
Rogers, E.2
Lorimer, G.H.3
Horowitz, P.M.4
-
5
-
-
0026489533
-
Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese
-
J.A. Mendoza, M.C. Butler & P.M. Horowitz: Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese. J Biol Chem 267, 24648-24654 (1992)
-
(1992)
J Biol Chem
, vol.267
, pp. 24648-24654
-
-
Mendoza, J.A.1
Butler, M.C.2
Horowitz, P.M.3
-
7
-
-
0033613206
-
Basis of substrate binding by the chaperonin GroEL
-
Z. Wang, H.P. Feng, S.J. Landry, J. Maxwell & L.M. Gierasch: Basis of substrate binding by the chaperonin GroEL. Biochemistry 38, 12537-12546 (1999)
-
(1999)
Biochemistry
, vol.38
, pp. 12537-12546
-
-
Wang, Z.1
Feng, H.P.2
Landry, S.J.3
Maxwell, J.4
Gierasch, L.M.5
-
8
-
-
0028838951
-
The hydrophobic nature of GroEL-substrate binding
-
Z. Lin, F.P. Schwarz & E. Eisenstein: The hydrophobic nature of GroEL-substrate binding. J Biol Chem 270, 1011-1014 (1995)
-
(1995)
J Biol Chem
, vol.270
, pp. 1011-1014
-
-
Lin, Z.1
Schwarz, F.P.2
Eisenstein, E.3
-
9
-
-
0030952676
-
Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems
-
C.C. Chao, Y.S. Ma & E.R. Standtman: Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci 94, 2969-2974 (1997)
-
(1997)
Proc Natl Acad Sci
, vol.94
, pp. 2969-2974
-
-
Chao, C.C.1
Ma, Y.S.2
Standtman, E.R.3
-
10
-
-
0033524938
-
Chaperone activity with a redox switch
-
U. Jakob, W. Muse, M. Eser & J.C. Bardwell: Chaperone activity with a redox switch. Cell 96, 341-352 (1999)
-
(1999)
Cell
, vol.96
, pp. 341-352
-
-
Jakob, U.1
Muse, W.2
Eser, M.3
Bardwell, J.C.4
-
11
-
-
0028981330
-
Alpha-Crystallin can act as a chaperone under conditions of oxidative stress
-
K. Wang & A. Spector: Alpha-Crystallin can act as a chaperone under conditions of oxidative stress. Invest Opthalmol Vis Sci 36, 3111-321 (1995)
-
(1995)
Invest Opthalmol Vis Sci
, vol.36
, pp. 3111-3321
-
-
Wang, K.1
Spector, A.2
-
12
-
-
0030586350
-
Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90
-
M. Conconi, L.A. Szwedal, R.L. Levine, E.R. Stadtman & B. Friguet: Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys 331, 232-240 (1996)
-
(1996)
Arch Biochem Biophys
, vol.331
, pp. 232-240
-
-
Conconi, M.1
Szwedal, L.A.2
Levine, R.L.3
Stadtman, E.R.4
Friguet, B.5
-
13
-
-
0024600744
-
Oxidative modifications of crystallins induced in calf lenses in vitro by hydrogen peroxide
-
R.J. Siezen, C.M. Coppin, E.D. Kaplan, D. Dwyer & J.A. Thomson: Oxidative modifications of crystallins induced in calf lenses in vitro by hydrogen peroxide. Exp Eye Res 48, 225-235 (1989)
-
(1989)
Exp Eye Res
, vol.48
, pp. 225-235
-
-
Siezen, R.J.1
Coppin, C.M.2
Kaplan, E.D.3
Dwyer, D.4
Thomson, J.A.5
-
14
-
-
0033582342
-
Thiolation of the gamma B-Crystallins in intact bovine lens exposed to hydrogen peroxide
-
S.R. Hanson, A.A. Chen, J.B. Smith & M.F. Lou: Thiolation of the gamma B-Crystallins in intact bovine lens exposed to hydrogen peroxide. J Biol Chem 274, 4735-4742 (1999)
-
(1999)
J Biol Chem
, vol.274
, pp. 4735-4742
-
-
Hanson, S.R.1
Chen, A.A.2
Smith, J.B.3
Lou, M.F.4
-
15
-
-
0034705402
-
Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone
-
S. Barbirz, U. Jakob & M. Glocker: Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J Biol Chem 275, 18759-18766 (2000)
-
(2000)
J Biol Chem
, vol.275
, pp. 18759-18766
-
-
Barbirz, S.1
Jakob, U.2
Glocker, M.3
-
16
-
-
0024603419
-
Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation
-
P.M. Horowitz & S. Bowman: Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation. J Biol Chem 264, 3311-3316 (1989)
-
(1989)
J Biol Chem
, vol.264
, pp. 3311-3316
-
-
Horowitz, P.M.1
Bowman, S.2
-
17
-
-
0034596211
-
Alpha-Crystallin facilitates the reactivation of hydrogen peroxide-inactivated rhodanese
-
D. Del Fierro, G. Zardeneta & J.A. Mendoza: Alpha-Crystallin facilitates the reactivation of hydrogen peroxide-inactivated rhodanese. Biochem Biophys Res Commun 274, 461-466 (2000)
-
(2000)
Biochem Biophys Res Commun
, vol.274
, pp. 461-466
-
-
Del Fierro, D.1
Zardeneta, G.2
Mendoza, J.A.3
-
18
-
-
0036289894
-
GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation
-
G.C. Melkani, G. Zardeneta & J.A. Mendoza: GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation. Biochem Biophys Res Commun 294, 893-899 (2002)
-
(2002)
Biochem Biophys Res Commun
, vol.294
, pp. 893-899
-
-
Melkani, G.C.1
Zardeneta, G.2
Mendoza, J.A.3
-
19
-
-
0026233969
-
Purification of bovine liver rhodanese by low-pH column chromatography
-
G.P. Kurzban & P.M. Horowitz: Purification of bovine liver rhodanese by low-pH column chromatography. Protein Expr Purif 2, 379-384 (1991)
-
(1991)
Protein Expr Purif
, vol.2
, pp. 379-384
-
-
Kurzban, G.P.1
Horowitz, P.M.2
-
20
-
-
0017798493
-
The covalent and tertiary structure of bovine liver rhodanese
-
J.H. Ploegman, G.H. Drent, K.H. Kalk, W.G.J. Hol, R.L. Heinrikson, P. Keim, L. Weng & J. Russell: The covalent and tertiary structure of bovine liver rhodanese. Nature 273, 1245-1249 (1978)
-
(1978)
Nature
, vol.273
, pp. 1245-1249
-
-
Ploegman, J.H.1
Drent, G.H.2
Kalk, K.H.3
Hol, W.G.J.4
Heinrikson, R.L.5
Keim, P.6
Weng, L.7
Russell, J.8
-
21
-
-
0031918147
-
Purification of GroEL with low fluorescence background
-
A.C. Clark, R. Ramanathan & C. Frieden: Purification of GroEL with low fluorescence background. Methods Enzymol 290, 100-118 (1998)
-
(1998)
Methods Enzymol
, vol.290
, pp. 100-118
-
-
Clark, A.C.1
Ramanathan, R.2
Frieden, C.3
-
22
-
-
0029882517
-
Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL
-
A.C. Clark, E. Hugo & C. Frieden: Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry 35, 5893-5901 (1996)
-
(1996)
Biochemistry
, vol.35
, pp. 5893-5901
-
-
Clark, A.C.1
Hugo, E.2
Frieden, C.3
-
23
-
-
0026741821
-
Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP
-
M.T. Fisher: Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 31, 3955-3963 (1992)
-
(1992)
Biochemistry
, vol.31
, pp. 3955-3963
-
-
Fisher, M.T.1
-
24
-
-
0025331905
-
Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent
-
P.V. Viitanen, T.H. Lubben, J. Reed, P. Goloubinoff, D.P. O'Keefe & G.H. Lorimer: Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent. Biochemistry 29, 5665-5671 (1990)
-
(1990)
Biochemistry
, vol.29
, pp. 5665-5671
-
-
Viitanen, P.V.1
Lubben, T.H.2
Reed, J.3
Goloubinoff, P.4
O'Keefe, D.P.5
Lorimer, G.H.6
-
25
-
-
0023900525
-
Homologous plant and bacterial proteins chaperone oligomeric protein assembly
-
S.M. Hemmingsen, C. Woolford, S.M. van der Vies, K. Tilly, D.T. Dennis, C.P. Georgopoulos, R.W. Hendrix & R.J. Ellis: Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330-334 (1988)
-
(1988)
Nature
, vol.333
, pp. 330-334
-
-
Hemmingsen, S.M.1
Woolford, C.2
Van Der Vies, S.M.3
Tilly, K.4
Dennis, D.T.5
Georgopoulos, C.P.6
Hendrix, R.W.7
Ellis, R.J.8
-
26
-
-
0014949207
-
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
-
U.K. Laemmli: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 (1970)
-
(1970)
Nature
, vol.227
, pp. 680-685
-
-
Laemmli, U.K.1
-
27
-
-
0030061191
-
Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide
-
J.A. Mendoza & G. Del Campo: Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide. J Biol Chem 271, 16344-16349 (1996)
-
(1996)
J Biol Chem
, vol.271
, pp. 16344-16349
-
-
Mendoza, J.A.1
Del Campo, G.2
-
28
-
-
0014589353
-
Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties
-
C.G. Rosen & G. Weber: Dimer formation from 1-amino-8- naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry 8, 3915-3920 (1969)
-
(1969)
Biochemistry
, vol.8
, pp. 3915-3920
-
-
Rosen, C.G.1
Weber, G.2
-
29
-
-
0026702578
-
Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures
-
J.A. Mendoza, G.H. Lorimer & P.M. Horowitz: Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J Biol Chem 267, 17631-17634 (1992)
-
(1992)
J Biol Chem
, vol.267
, pp. 17631-17634
-
-
Mendoza, J.A.1
Lorimer, G.H.2
Horowitz, P.M.3
-
30
-
-
0035011524
-
GroEL-assisted refolding of adrenodoxin during chemical cluster insertion
-
S. Iametti, A.K. Bera, G. Vecchio, A. Grinberg, R. Bernhardt & F. Bonomi: GroEL-assisted refolding of adrenodoxin during chemical cluster insertion. Eur J Biochem 268, 2421-2429 (2001)
-
(2001)
Eur J Biochem
, vol.268
, pp. 2421-2429
-
-
Iametti, S.1
Bera, A.K.2
Vecchio, G.3
Grinberg, A.4
Bernhardt, R.5
Bonomi, F.6
-
31
-
-
0034806398
-
GroEL-assisted dehydrogenase folding mediated by coenzyme is ATP-independent
-
S. Zhang, J. Li & C.C. Wang: GroEL-assisted dehydrogenase folding mediated by coenzyme is ATP-independent. Biochem Biophys Res Commun 285, 277-282 (2001)
-
(2001)
Biochem Biophys Res Commun
, vol.285
, pp. 277-282
-
-
Zhang, S.1
Li, J.2
Wang, C.C.3
-
32
-
-
0037082132
-
Polyols induce ATP-independent folding of GroEL-bound bacterial glutamine synthetase
-
P.A. Voziyan & M.T. Fisher: Polyols induce ATP-independent folding of GroEL-bound bacterial glutamine synthetase. Arch Biochem Biophys 397, 293-29743 (2002)
-
(2002)
Arch Biochem Biophys
, vol.397
, pp. 293-29743
-
-
Voziyan, P.A.1
Fisher, M.T.2
-
33
-
-
0028023363
-
Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers
-
J.A. Mendoza, B. Demeler & P.M. Horowitz: Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers. J Biol Chem 269, 2447-2451 (1994)
-
(1994)
J Biol Chem
, vol.269
, pp. 2447-2451
-
-
Mendoza, J.A.1
Demeler, B.2
Horowitz, P.M.3
-
34
-
-
0035052766
-
Aggregation of creatine kinase during refolding and chaperonin-mediated folding of creatine kinase
-
S. Li, J.H. Bai, Y.D. Park & H.M. Zhou: Aggregation of creatine kinase during refolding and chaperonin-mediated folding of creatine kinase. Int Biochem Cell Biol 33, 279-286 (2001)
-
(2001)
Int Biochem Cell Biol
, vol.33
, pp. 279-286
-
-
Li, S.1
Bai, J.H.2
Park, Y.D.3
Zhou, H.M.4
-
35
-
-
0035101472
-
Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury
-
S. Cuzzocrea, D.P. Riley, A.P. Caputi & D. Salvemini: Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53, 135-159 (2001)
-
(2001)
Pharmacol Rev
, vol.53
, pp. 135-159
-
-
Cuzzocrea, S.1
Riley, D.P.2
Caputi, A.P.3
Salvemini, D.4
-
36
-
-
0037113995
-
Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae
-
E. Cabiscol, G. Belli, J. Tamarit, P. Echave, E. Herrero & J. Ros: Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277, 44531-44538 (2002)
-
(2002)
J Biol Chem
, vol.277
, pp. 44531-44538
-
-
Cabiscol, E.1
Belli, G.2
Tamarit, J.3
Echave, P.4
Herrero, E.5
Ros, J.6
-
37
-
-
0030795074
-
Enhanced hydrogen peroxide sensitivity and altered stress protein expression in iron-starved Mycobacterium smegmatis
-
M.D. Lundrigan, J.E. Arceneaux, W. Zhu & B.R. Byers: Enhanced hydrogen peroxide sensitivity and altered stress protein expression in iron-starved Mycobacterium smegmatis. Biometals 10, 215-225 (1997)
-
(1997)
Biometals
, vol.10
, pp. 215-225
-
-
Lundrigan, M.D.1
Arceneaux, J.E.2
Zhu, W.3
Byers, B.R.4
|